map_util.h 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// from google3/util/gtl/map_util.h
// Author: Anton Carver

#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__

#include <stddef.h>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

#include <google/protobuf/stubs/common.h>

namespace google {
namespace protobuf {
namespace internal {
// Local implementation of RemoveConst to avoid including base/type_traits.h.
template <class T> struct RemoveConst { typedef T type; };
template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
}  // namespace internal

//
// Find*()
//

// Returns a const reference to the value associated with the given key if it
// exists. Crashes otherwise.
//
// This is intended as a replacement for operator[] as an rvalue (for reading)
// when the key is guaranteed to exist.
//
// operator[] for lookup is discouraged for several reasons:
//  * It has a side-effect of inserting missing keys
//  * It is not thread-safe (even when it is not inserting, it can still
//      choose to resize the underlying storage)
//  * It invalidates iterators (when it chooses to resize)
//  * It default constructs a value object even if it doesn't need to
//
// This version assumes the key is printable, and includes it in the fatal log
// message.
template <class Collection>
const typename Collection::value_type::second_type&
FindOrDie(const Collection& collection,
          const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
  return it->second;
}

// Same as above, but returns a non-const reference.
template <class Collection>
typename Collection::value_type::second_type&
FindOrDie(Collection& collection,  // NOLINT
          const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
  return it->second;
}

// Same as FindOrDie above, but doesn't log the key on failure.
template <class Collection>
const typename Collection::value_type::second_type&
FindOrDieNoPrint(const Collection& collection,
                 const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
  return it->second;
}

// Same as above, but returns a non-const reference.
template <class Collection>
typename Collection::value_type::second_type&
FindOrDieNoPrint(Collection& collection,  // NOLINT
                 const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
  return it->second;
}

// Returns a const reference to the value associated with the given key if it
// exists, otherwise returns a const reference to the provided default value.
//
// WARNING: If a temporary object is passed as the default "value,"
// this function will return a reference to that temporary object,
// which will be destroyed at the end of the statement. A common
// example: if you have a map with string values, and you pass a char*
// as the default "value," either use the returned value immediately
// or store it in a string (not string&).
// Details: http://go/findwithdefault
template <class Collection>
const typename Collection::value_type::second_type&
FindWithDefault(const Collection& collection,
                const typename Collection::value_type::first_type& key,
                const typename Collection::value_type::second_type& value) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return value;
  }
  return it->second;
}

// Returns a pointer to the const value associated with the given key if it
// exists, or nullptr otherwise.
template <class Collection>
const typename Collection::value_type::second_type*
FindOrNull(const Collection& collection,
           const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  return &it->second;
}

// Same as above but returns a pointer to the non-const value.
template <class Collection>
typename Collection::value_type::second_type*
FindOrNull(Collection& collection,  // NOLINT
           const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  return &it->second;
}

// Returns the pointer value associated with the given key. If none is found,
// nullptr is returned. The function is designed to be used with a map of keys to
// pointers.
//
// This function does not distinguish between a missing key and a key mapped
// to nullptr.
template <class Collection>
typename Collection::value_type::second_type
FindPtrOrNull(const Collection& collection,
              const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return typename Collection::value_type::second_type();
  }
  return it->second;
}

// Same as above, except takes non-const reference to collection.
//
// This function is needed for containers that propagate constness to the
// pointee, such as boost::ptr_map.
template <class Collection>
typename Collection::value_type::second_type
FindPtrOrNull(Collection& collection,  // NOLINT
              const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  if (it == collection.end()) {
    return typename Collection::value_type::second_type();
  }
  return it->second;
}

// Finds the pointer value associated with the given key in a map whose values
// are linked_ptrs. Returns nullptr if key is not found.
template <class Collection>
typename Collection::value_type::second_type::element_type*
FindLinkedPtrOrNull(const Collection& collection,
                    const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  // Since linked_ptr::get() is a const member returning a non const,
  // we do not need a version of this function taking a non const collection.
  return it->second.get();
}

// Same as above, but dies if the key is not found.
template <class Collection>
typename Collection::value_type::second_type::element_type&
FindLinkedPtrOrDie(const Collection& collection,
                   const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) <<  "key not found: " << key;
  // Since linked_ptr::operator*() is a const member returning a non const,
  // we do not need a version of this function taking a non const collection.
  return *it->second;
}

// Finds the value associated with the given key and copies it to *value (if not
// nullptr). Returns false if the key was not found, true otherwise.
template <class Collection, class Key, class Value>
bool FindCopy(const Collection& collection,
              const Key& key,
              Value* const value) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return false;
  }
  if (value) {
    *value = it->second;
  }
  return true;
}

//
// Contains*()
//

// Returns true if and only if the given collection contains the given key.
template <class Collection, class Key>
bool ContainsKey(const Collection& collection, const Key& key) {
  return collection.find(key) != collection.end();
}

// Returns true if and only if the given collection contains the given key-value
// pair.
template <class Collection, class Key, class Value>
bool ContainsKeyValuePair(const Collection& collection,
                          const Key& key,
                          const Value& value) {
  typedef typename Collection::const_iterator const_iterator;
  std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
  for (const_iterator it = range.first; it != range.second; ++it) {
    if (it->second == value) {
      return true;
    }
  }
  return false;
}

//
// Insert*()
//

// Inserts the given key-value pair into the collection. Returns true if and
// only if the key from the given pair didn't previously exist. Otherwise, the
// value in the map is replaced with the value from the given pair.
template <class Collection>
bool InsertOrUpdate(Collection* const collection,
                    const typename Collection::value_type& vt) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (!ret.second) {
    // update
    ret.first->second = vt.second;
    return false;
  }
  return true;
}

// Same as above, except that the key and value are passed separately.
template <class Collection>
bool InsertOrUpdate(Collection* const collection,
                    const typename Collection::value_type::first_type& key,
                    const typename Collection::value_type::second_type& value) {
  return InsertOrUpdate(
      collection, typename Collection::value_type(key, value));
}

// Inserts/updates all the key-value pairs from the range defined by the
// iterators "first" and "last" into the given collection.
template <class Collection, class InputIterator>
void InsertOrUpdateMany(Collection* const collection,
                        InputIterator first, InputIterator last) {
  for (; first != last; ++first) {
    InsertOrUpdate(collection, *first);
  }
}

// Change the value associated with a particular key in a map or hash_map
// of the form map<Key, Value*> which owns the objects pointed to by the
// value pointers.  If there was an existing value for the key, it is deleted.
// True indicates an insert took place, false indicates an update + delete.
template <class Collection>
bool InsertAndDeleteExisting(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& value) {
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, value));
  if (!ret.second) {
    delete ret.first->second;
    ret.first->second = value;
    return false;
  }
  return true;
}

// Inserts the given key and value into the given collection if and only if the
// given key did NOT already exist in the collection. If the key previously
// existed in the collection, the value is not changed. Returns true if the
// key-value pair was inserted; returns false if the key was already present.
template <class Collection>
bool InsertIfNotPresent(Collection* const collection,
                        const typename Collection::value_type& vt) {
  return collection->insert(vt).second;
}

// Same as above except the key and value are passed separately.
template <class Collection>
bool InsertIfNotPresent(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& value) {
  return InsertIfNotPresent(
      collection, typename Collection::value_type(key, value));
}

// Same as above except dies if the key already exists in the collection.
template <class Collection>
void InsertOrDie(Collection* const collection,
                 const typename Collection::value_type& value) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, value))
      << "duplicate value: " << value;
}

// Same as above except doesn't log the value on error.
template <class Collection>
void InsertOrDieNoPrint(Collection* const collection,
                        const typename Collection::value_type& value) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
}

// Inserts the key-value pair into the collection. Dies if key was already
// present.
template <class Collection>
void InsertOrDie(Collection* const collection,
                 const typename Collection::value_type::first_type& key,
                 const typename Collection::value_type::second_type& data) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
      << "duplicate key: " << key;
}

// Same as above except doesn't log the key on error.
template <class Collection>
void InsertOrDieNoPrint(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& data) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
}

// Inserts a new key and default-initialized value. Dies if the key was already
// present. Returns a reference to the value. Example usage:
//
// map<int, SomeProto> m;
// SomeProto& proto = InsertKeyOrDie(&m, 3);
// proto.set_field("foo");
template <class Collection>
typename Collection::value_type::second_type& InsertKeyOrDie(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type value_type;
  std::pair<typename Collection::iterator, bool> res =
      collection->insert(value_type(key, typename value_type::second_type()));
  GOOGLE_CHECK(res.second) << "duplicate key: " << key;
  return res.first->second;
}

//
// Lookup*()
//

// Looks up a given key and value pair in a collection and inserts the key-value
// pair if it's not already present. Returns a reference to the value associated
// with the key.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsert(Collection* const collection,
               const typename Collection::value_type& vt) {
  return collection->insert(vt).first->second;
}

// Same as above except the key-value are passed separately.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsert(Collection* const collection,
               const typename Collection::value_type::first_type& key,
               const typename Collection::value_type::second_type& value) {
  return LookupOrInsert(
      collection, typename Collection::value_type(key, value));
}

// Counts the number of equivalent elements in the given "sequence", and stores
// the results in "count_map" with element as the key and count as the value.
//
// Example:
//   vector<string> v = {"a", "b", "c", "a", "b"};
//   map<string, int> m;
//   AddTokenCounts(v, 1, &m);
//   assert(m["a"] == 2);
//   assert(m["b"] == 2);
//   assert(m["c"] == 1);
template <typename Sequence, typename Collection>
void AddTokenCounts(
    const Sequence& sequence,
    const typename Collection::value_type::second_type& increment,
    Collection* const count_map) {
  for (typename Sequence::const_iterator it = sequence.begin();
       it != sequence.end(); ++it) {
    typename Collection::value_type::second_type& value =
        LookupOrInsert(count_map, *it,
                       typename Collection::value_type::second_type());
    value += increment;
  }
}

// Returns a reference to the value associated with key. If not found, a value
// is default constructed on the heap and added to the map.
//
// This function is useful for containers of the form map<Key, Value*>, where
// inserting a new key, value pair involves constructing a new heap-allocated
// Value, and storing a pointer to that in the collection.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsertNew(Collection* const collection,
                  const typename Collection::value_type::first_type& key) {
  typedef typename std::iterator_traits<
    typename Collection::value_type::second_type>::value_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(
          key,
          static_cast<typename Collection::value_type::second_type>(nullptr)));
  if (ret.second) {
    ret.first->second = new Element();
  }
  return ret.first->second;
}

// Same as above but constructs the value using the single-argument constructor
// and the given "arg".
template <class Collection, class Arg>
typename Collection::value_type::second_type&
LookupOrInsertNew(Collection* const collection,
                  const typename Collection::value_type::first_type& key,
                  const Arg& arg) {
  typedef typename std::iterator_traits<
    typename Collection::value_type::second_type>::value_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(
          key,
          static_cast<typename Collection::value_type::second_type>(nullptr)));
  if (ret.second) {
    ret.first->second = new Element(arg);
  }
  return ret.first->second;
}

// Lookup of linked/shared pointers is used in two scenarios:
//
// Use LookupOrInsertNewLinkedPtr if the container owns the elements.
// In this case it is fine working with the raw pointer as long as it is
// guaranteed that no other thread can delete/update an accessed element.
// A mutex will need to lock the container operation as well as the use
// of the returned elements. Finding an element may be performed using
// FindLinkedPtr*().
//
// Use LookupOrInsertNewSharedPtr if the container does not own the elements
// for their whole lifetime. This is typically the case when a reader allows
// parallel updates to the container. In this case a Mutex only needs to lock
// container operations, but all element operations must be performed on the
// shared pointer. Finding an element must be performed using FindPtr*() and
// cannot be done with FindLinkedPtr*() even though it compiles.

// Lookup a key in a map or hash_map whose values are linked_ptrs.  If it is
// missing, set collection[key].reset(new Value::element_type) and return that.
// Value::element_type must be default constructable.
template <class Collection>
typename Collection::value_type::second_type::element_type*
LookupOrInsertNewLinkedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type::second_type Value;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, Value()));
  if (ret.second) {
    ret.first->second.reset(new typename Value::element_type);
  }
  return ret.first->second.get();
}

// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
// a single-parameter constructor.  Note: the constructor argument is computed
// even if it will not be used, so only values cheap to compute should be passed
// here.  On the other hand it does not matter how expensive the construction of
// the actual stored value is, as that only occurs if necessary.
template <class Collection, class Arg>
typename Collection::value_type::second_type::element_type*
LookupOrInsertNewLinkedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const Arg& arg) {
  typedef typename Collection::value_type::second_type Value;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, Value()));
  if (ret.second) {
    ret.first->second.reset(new typename Value::element_type(arg));
  }
  return ret.first->second.get();
}

// Lookup a key in a map or hash_map whose values are shared_ptrs.  If it is
// missing, set collection[key].reset(new Value::element_type). Unlike
// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
// the raw pointer. Value::element_type must be default constructable.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsertNewSharedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type::second_type SharedPtr;
  typedef typename Collection::value_type::second_type::element_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, SharedPtr()));
  if (ret.second) {
    ret.first->second.reset(new Element());
  }
  return ret.first->second;
}

// A variant of LookupOrInsertNewSharedPtr where the value is constructed using
// a single-parameter constructor.  Note: the constructor argument is computed
// even if it will not be used, so only values cheap to compute should be passed
// here.  On the other hand it does not matter how expensive the construction of
// the actual stored value is, as that only occurs if necessary.
template <class Collection, class Arg>
typename Collection::value_type::second_type&
LookupOrInsertNewSharedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const Arg& arg) {
  typedef typename Collection::value_type::second_type SharedPtr;
  typedef typename Collection::value_type::second_type::element_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, SharedPtr()));
  if (ret.second) {
    ret.first->second.reset(new Element(arg));
  }
  return ret.first->second;
}

//
// Misc Utility Functions
//

// Updates the value associated with the given key. If the key was not already
// present, then the key-value pair are inserted and "previous" is unchanged. If
// the key was already present, the value is updated and "*previous" will
// contain a copy of the old value.
//
// InsertOrReturnExisting has complementary behavior that returns the
// address of an already existing value, rather than updating it.
template <class Collection>
bool UpdateReturnCopy(Collection* const collection,
                      const typename Collection::value_type::first_type& key,
                      const typename Collection::value_type::second_type& value,
                      typename Collection::value_type::second_type* previous) {
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, value));
  if (!ret.second) {
    // update
    if (previous) {
      *previous = ret.first->second;
    }
    ret.first->second = value;
    return true;
  }
  return false;
}

// Same as above except that the key and value are passed as a pair.
template <class Collection>
bool UpdateReturnCopy(Collection* const collection,
                      const typename Collection::value_type& vt,
                      typename Collection::value_type::second_type* previous) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (!ret.second) {
    // update
    if (previous) {
      *previous = ret.first->second;
    }
    ret.first->second = vt.second;
    return true;
  }
  return false;
}

// Tries to insert the given key-value pair into the collection. Returns nullptr if
// the insert succeeds. Otherwise, returns a pointer to the existing value.
//
// This complements UpdateReturnCopy in that it allows to update only after
// verifying the old value and still insert quickly without having to look up
// twice. Unlike UpdateReturnCopy this also does not come with the issue of an
// undefined previous* in case new data was inserted.
template <class Collection>
typename Collection::value_type::second_type* InsertOrReturnExisting(
    Collection* const collection, const typename Collection::value_type& vt) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (ret.second) {
    return nullptr;  // Inserted, no existing previous value.
  } else {
    return &ret.first->second;  // Return address of already existing value.
  }
}

// Same as above, except for explicit key and data.
template <class Collection>
typename Collection::value_type::second_type* InsertOrReturnExisting(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& data) {
  return InsertOrReturnExisting(collection,
                                typename Collection::value_type(key, data));
}

// Erases the collection item identified by the given key, and returns the value
// associated with that key. It is assumed that the value (i.e., the
// mapped_type) is a pointer. Returns nullptr if the key was not found in the
// collection.
//
// Examples:
//   map<string, MyType*> my_map;
//
// One line cleanup:
//     delete EraseKeyReturnValuePtr(&my_map, "abc");
//
// Use returned value:
//     std::unique_ptr<MyType> value_ptr(
//         EraseKeyReturnValuePtr(&my_map, "abc"));
//     if (value_ptr.get())
//       value_ptr->DoSomething();
//
template <class Collection>
typename Collection::value_type::second_type EraseKeyReturnValuePtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection->find(key);
  if (it == collection->end()) {
    return nullptr;
  }
  typename Collection::value_type::second_type v = it->second;
  collection->erase(it);
  return v;
}

// Inserts all the keys from map_container into key_container, which must
// support insert(MapContainer::key_type).
//
// Note: any initial contents of the key_container are not cleared.
template <class MapContainer, class KeyContainer>
void InsertKeysFromMap(const MapContainer& map_container,
                       KeyContainer* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->insert(it->first);
  }
}

// Appends all the keys from map_container into key_container, which must
// support push_back(MapContainer::key_type).
//
// Note: any initial contents of the key_container are not cleared.
template <class MapContainer, class KeyContainer>
void AppendKeysFromMap(const MapContainer& map_container,
                       KeyContainer* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->push_back(it->first);
  }
}

// A more specialized overload of AppendKeysFromMap to optimize reallocations
// for the common case in which we're appending keys to a vector and hence can
// (and sometimes should) call reserve() first.
//
// (It would be possible to play SFINAE games to call reserve() for any
// container that supports it, but this seems to get us 99% of what we need
// without the complexity of a SFINAE-based solution.)
template <class MapContainer, class KeyType>
void AppendKeysFromMap(const MapContainer& map_container,
                       std::vector<KeyType>* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  // We now have the opportunity to call reserve(). Calling reserve() every
  // time is a bad idea for some use cases: libstdc++'s implementation of
  // vector<>::reserve() resizes the vector's backing store to exactly the
  // given size (unless it's already at least that big). Because of this,
  // the use case that involves appending a lot of small maps (total size
  // N) one by one to a vector would be O(N^2). But never calling reserve()
  // loses the opportunity to improve the use case of adding from a large
  // map to an empty vector (this improves performance by up to 33%). A
  // number of heuristics are possible; see the discussion in
  // cl/34081696. Here we use the simplest one.
  if (key_container->empty()) {
    key_container->reserve(map_container.size());
  }
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->push_back(it->first);
  }
}

// Inserts all the values from map_container into value_container, which must
// support push_back(MapContainer::mapped_type).
//
// Note: any initial contents of the value_container are not cleared.
template <class MapContainer, class ValueContainer>
void AppendValuesFromMap(const MapContainer& map_container,
                         ValueContainer* value_container) {
  GOOGLE_CHECK(value_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    value_container->push_back(it->second);
  }
}

// A more specialized overload of AppendValuesFromMap to optimize reallocations
// for the common case in which we're appending values to a vector and hence
// can (and sometimes should) call reserve() first.
//
// (It would be possible to play SFINAE games to call reserve() for any
// container that supports it, but this seems to get us 99% of what we need
// without the complexity of a SFINAE-based solution.)
template <class MapContainer, class ValueType>
void AppendValuesFromMap(const MapContainer& map_container,
                         std::vector<ValueType>* value_container) {
  GOOGLE_CHECK(value_container != nullptr);
  // See AppendKeysFromMap for why this is done.
  if (value_container->empty()) {
    value_container->reserve(map_container.size());
  }
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    value_container->push_back(it->second);
  }
}

}  // namespace protobuf
}  // namespace google

#endif  // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__