map.h 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file defines the map container and its helpers to support protobuf maps.
//
// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.

#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__

#include <initializer_list>
#include <iterator>
#include <limits>  // To support Visual Studio 2008
#include <set>
#include <type_traits>
#include <utility>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/generated_enum_util.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/stubs/hash.h>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

#include <google/protobuf/port_def.inc>

namespace google {
namespace protobuf {

template <typename Key, typename T>
class Map;

class MapIterator;

template <typename Enum>
struct is_proto_enum;

namespace internal {
template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type, int default_enum_value>
class MapFieldLite;

template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type, int default_enum_value>
class MapField;

template <typename Key, typename T>
class TypeDefinedMapFieldBase;

class DynamicMapField;

class GeneratedMessageReflection;

// re-implement std::allocator to use arena allocator for memory allocation.
// Used for Map implementation. Users should not use this class
// directly.
template <typename U>
class MapAllocator {
 public:
  using value_type = U;
  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;
  using size_type = size_t;
  using difference_type = ptrdiff_t;

  MapAllocator() : arena_(nullptr) {}
  explicit MapAllocator(Arena* arena) : arena_(arena) {}
  template <typename X>
  MapAllocator(const MapAllocator<X>& allocator)  // NOLINT(runtime/explicit)
      : arena_(allocator.arena()) {}

  pointer allocate(size_type n, const void* /* hint */ = nullptr) {
    // If arena is not given, malloc needs to be called which doesn't
    // construct element object.
    if (arena_ == nullptr) {
      return static_cast<pointer>(::operator new(n * sizeof(value_type)));
    } else {
      return reinterpret_cast<pointer>(
          Arena::CreateArray<uint8>(arena_, n * sizeof(value_type)));
    }
  }

  void deallocate(pointer p, size_type n) {
    if (arena_ == nullptr) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
      ::operator delete(p, n * sizeof(value_type));
#else
      (void)n;
      ::operator delete(p);
#endif
    }
  }

#if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \
    !defined(GOOGLE_PROTOBUF_OS_NACL) &&                            \
    !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
  template <class NodeType, class... Args>
  void construct(NodeType* p, Args&&... args) {
    // Clang 3.6 doesn't compile static casting to void* directly. (Issue
    // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
    // not cast away constness". So first the maybe const pointer is casted to
    // const void* and after the const void* is const casted.
    new (const_cast<void*>(static_cast<const void*>(p)))
        NodeType(std::forward<Args>(args)...);
  }

  template <class NodeType>
  void destroy(NodeType* p) {
    p->~NodeType();
  }
#else
  void construct(pointer p, const_reference t) { new (p) value_type(t); }

  void destroy(pointer p) { p->~value_type(); }
#endif

  template <typename X>
  struct rebind {
    using other = MapAllocator<X>;
  };

  template <typename X>
  bool operator==(const MapAllocator<X>& other) const {
    return arena_ == other.arena_;
  }

  template <typename X>
  bool operator!=(const MapAllocator<X>& other) const {
    return arena_ != other.arena_;
  }

  // To support Visual Studio 2008
  size_type max_size() const {
    // parentheses around (std::...:max) prevents macro warning of max()
    return (std::numeric_limits<size_type>::max)();
  }

  // To support gcc-4.4, which does not properly
  // support templated friend classes
  Arena* arena() const { return arena_; }

 private:
  using DestructorSkippable_ = void;
  Arena* const arena_;
};

template <typename Key>
struct DerefCompare {
  bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; }
};

// This class is used to get trivially destructible views of std::string and
// MapKey, which are the only non-trivially destructible allowed key types.
template <typename Key>
class KeyView {
 public:
  KeyView(const Key& key) : key_(&key) {}  // NOLINT(runtime/explicit)

  const Key& get() const { return *key_; }
  // Allows implicit conversions to `const Key&`, which allows us to use the
  // hasher defined for Key.
  operator const Key&() const { return get(); }  // NOLINT(runtime/explicit)

  bool operator==(const KeyView& other) const { return get() == other.get(); }
  bool operator==(const Key& other) const { return get() == other; }
  bool operator<(const KeyView& other) const { return get() < other.get(); }
  bool operator<(const Key& other) const { return get() < other; }

 private:
  const Key* key_;
};

// Allows the InnerMap type to support skippable destruction.
template <typename Key>
struct GetTrivialKey {
  using type =
      typename std::conditional<std::is_trivially_destructible<Key>::value, Key,
                                KeyView<Key>>::type;
};

}  // namespace internal

// This is the class for Map's internal value_type. Instead of using
// std::pair as value_type, we use this class which provides us more control of
// its process of construction and destruction.
template <typename Key, typename T>
struct MapPair {
  using first_type = const Key;
  using second_type = T;

  MapPair(const Key& other_first, const T& other_second)
      : first(other_first), second(other_second) {}
  explicit MapPair(const Key& other_first) : first(other_first), second() {}
  MapPair(const MapPair& other) : first(other.first), second(other.second) {}

  ~MapPair() {}

  // Implicitly convertible to std::pair of compatible types.
  template <typename T1, typename T2>
  operator std::pair<T1, T2>() const {  // NOLINT(runtime/explicit)
    return std::pair<T1, T2>(first, second);
  }

  const Key first;
  T second;

 private:
  friend class Arena;
  friend class Map<Key, T>;
};

// Map is an associative container type used to store protobuf map
// fields.  Each Map instance may or may not use a different hash function, a
// different iteration order, and so on.  E.g., please don't examine
// implementation details to decide if the following would work:
//  Map<int, int> m0, m1;
//  m0[0] = m1[0] = m0[1] = m1[1] = 0;
//  assert(m0.begin()->first == m1.begin()->first);  // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.
template <typename Key, typename T>
class Map {
 public:
  using key_type = Key;
  using mapped_type = T;
  using value_type = MapPair<Key, T>;

  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;

  using size_type = size_t;
  using hasher = hash<Key>;

  Map() : arena_(nullptr), default_enum_value_(0) { Init(); }
  explicit Map(Arena* arena) : arena_(arena), default_enum_value_(0) { Init(); }

  Map(const Map& other)
      : arena_(nullptr), default_enum_value_(other.default_enum_value_) {
    Init();
    insert(other.begin(), other.end());
  }

  Map(Map&& other) noexcept : Map() {
    if (other.arena_) {
      *this = other;
    } else {
      swap(other);
    }
  }
  Map& operator=(Map&& other) noexcept {
    if (this != &other) {
      if (arena_ != other.arena_) {
        *this = other;
      } else {
        swap(other);
      }
    }
    return *this;
  }

  template <class InputIt>
  Map(const InputIt& first, const InputIt& last)
      : arena_(nullptr), default_enum_value_(0) {
    Init();
    insert(first, last);
  }

  ~Map() {
    clear();
    if (arena_ == nullptr) {
      delete elements_;
    }
  }

 private:
  void Init() { elements_ = Arena::CreateMessage<InnerMap>(arena_, 0u); }

  // InnerMap's key type is TrivialKey and its value type is value_type*.  We
  // use a custom class here and for Node, below, to ensure that k_ is at offset
  // 0, allowing safe conversion from pointer to Node to pointer to TrivialKey,
  // and vice versa when appropriate.  We use GetTrivialKey to adapt Key to
  // be a trivially destructible view if Key is not already trivially
  // destructible.  This view points into the Key inside v_ once it's
  // initialized.
  using TrivialKey = typename internal::GetTrivialKey<Key>::type;
  class KeyValuePair {
   public:
    KeyValuePair(const TrivialKey& k, value_type* v) : k_(k), v_(v) {}

    const TrivialKey& key() const { return k_; }
    TrivialKey& key() { return k_; }
    value_type* value() const { return v_; }
    value_type*& value() { return v_; }

   private:
    TrivialKey k_;
    value_type* v_;
  };

  using Allocator = internal::MapAllocator<KeyValuePair>;

  // InnerMap is a generic hash-based map.  It doesn't contain any
  // protocol-buffer-specific logic.  It is a chaining hash map with the
  // additional feature that some buckets can be converted to use an ordered
  // container.  This ensures O(lg n) bounds on find, insert, and erase, while
  // avoiding the overheads of ordered containers most of the time.
  //
  // The implementation doesn't need the full generality of unordered_map,
  // and it doesn't have it.  More bells and whistles can be added as needed.
  // Some implementation details:
  // 1. The hash function has type hasher and the equality function
  //    equal_to<Key>.  We inherit from hasher to save space
  //    (empty-base-class optimization).
  // 2. The number of buckets is a power of two.
  // 3. Buckets are converted to trees in pairs: if we convert bucket b then
  //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
  //    the same non-null value iff they are sharing a tree.  (An alternative
  //    implementation strategy would be to have a tag bit per bucket.)
  // 4. As is typical for hash_map and such, the Keys and Values are always
  //    stored in linked list nodes.  Pointers to elements are never invalidated
  //    until the element is deleted.
  // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
  //    a bucket doesn't copy Key-Value pairs.
  // 6. Once we've tree-converted a bucket, it is never converted back. However,
  //    the items a tree contains may wind up assigned to trees or lists upon a
  //    rehash.
  // 7. The code requires no C++ features from C++14 or later.
  // 8. Mutations to a map do not invalidate the map's iterators, pointers to
  //    elements, or references to elements.
  // 9. Except for erase(iterator), any non-const method can reorder iterators.
  // 10. InnerMap's key is TrivialKey, which is either Key, if Key is trivially
  //    destructible, or a trivially destructible view of Key otherwise. This
  //    allows InnerMap's destructor to be skipped when InnerMap is
  //    arena-allocated.
  class InnerMap : private hasher {
   public:
    using Value = value_type*;

    explicit InnerMap(size_type n) : InnerMap(nullptr, n) {}
    InnerMap(Arena* arena, size_type n)
        : hasher(),
          num_elements_(0),
          seed_(Seed()),
          table_(nullptr),
          alloc_(arena) {
      n = TableSize(n);
      table_ = CreateEmptyTable(n);
      num_buckets_ = index_of_first_non_null_ = n;
      static_assert(
          std::is_trivially_destructible<KeyValuePair>::value,
          "We require KeyValuePair to be trivially destructible so that we can "
          "skip InnerMap's destructor when it's arena allocated.");
    }

    ~InnerMap() {
      if (table_ != nullptr) {
        clear();
        Dealloc<void*>(table_, num_buckets_);
      }
    }

   private:
    enum { kMinTableSize = 8 };

    // Linked-list nodes, as one would expect for a chaining hash table.
    struct Node {
      KeyValuePair kv;
      Node* next;
    };

    // This is safe only if the given pointer is known to point to a Key that is
    // part of a Node.
    static Node* NodePtrFromKeyPtr(TrivialKey* k) {
      return reinterpret_cast<Node*>(k);
    }

    static TrivialKey* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); }

    // Trees.  The payload type is pointer to Key, so that we can query the tree
    // with Keys that are not in any particular data structure.  When we insert,
    // though, the pointer is always pointing to a Key that is inside a Node.
    using KeyPtrAllocator =
        typename Allocator::template rebind<TrivialKey*>::other;
    using Tree = std::set<TrivialKey*, internal::DerefCompare<TrivialKey>,
                          KeyPtrAllocator>;
    using TreeIterator = typename Tree::iterator;

    // iterator and const_iterator are instantiations of iterator_base.
    template <typename KeyValueType>
    class iterator_base {
     public:
      using reference = KeyValueType&;
      using pointer = KeyValueType*;

      // Invariants:
      // node_ is always correct. This is handy because the most common
      // operations are operator* and operator-> and they only use node_.
      // When node_ is set to a non-null value, all the other non-const fields
      // are updated to be correct also, but those fields can become stale
      // if the underlying map is modified.  When those fields are needed they
      // are rechecked, and updated if necessary.
      iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}

      explicit iterator_base(const InnerMap* m) : m_(m) {
        SearchFrom(m->index_of_first_non_null_);
      }

      // Any iterator_base can convert to any other.  This is overkill, and we
      // rely on the enclosing class to use it wisely.  The standard "iterator
      // can convert to const_iterator" is OK but the reverse direction is not.
      template <typename U>
      explicit iterator_base(const iterator_base<U>& it)
          : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}

      iterator_base(Node* n, const InnerMap* m, size_type index)
          : node_(n), m_(m), bucket_index_(index) {}

      iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
          : node_(NodePtrFromKeyPtr(*tree_it)), m_(m), bucket_index_(index) {
        // Invariant: iterators that use buckets with trees have an even
        // bucket_index_.
        GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
      }

      // Advance through buckets, looking for the first that isn't empty.
      // If nothing non-empty is found then leave node_ == nullptr.
      void SearchFrom(size_type start_bucket) {
        GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
               m_->table_[m_->index_of_first_non_null_] != nullptr);
        node_ = nullptr;
        for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
             bucket_index_++) {
          if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
            node_ = static_cast<Node*>(m_->table_[bucket_index_]);
            break;
          } else if (m_->TableEntryIsTree(bucket_index_)) {
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            GOOGLE_DCHECK(!tree->empty());
            node_ = NodePtrFromKeyPtr(*tree->begin());
            break;
          }
        }
      }

      reference operator*() const { return node_->kv; }
      pointer operator->() const { return &(operator*()); }

      friend bool operator==(const iterator_base& a, const iterator_base& b) {
        return a.node_ == b.node_;
      }
      friend bool operator!=(const iterator_base& a, const iterator_base& b) {
        return a.node_ != b.node_;
      }

      iterator_base& operator++() {
        if (node_->next == nullptr) {
          TreeIterator tree_it;
          const bool is_list = revalidate_if_necessary(&tree_it);
          if (is_list) {
            SearchFrom(bucket_index_ + 1);
          } else {
            GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            if (++tree_it == tree->end()) {
              SearchFrom(bucket_index_ + 2);
            } else {
              node_ = NodePtrFromKeyPtr(*tree_it);
            }
          }
        } else {
          node_ = node_->next;
        }
        return *this;
      }

      iterator_base operator++(int /* unused */) {
        iterator_base tmp = *this;
        ++*this;
        return tmp;
      }

      // Assumes node_ and m_ are correct and non-null, but other fields may be
      // stale.  Fix them as needed.  Then return true iff node_ points to a
      // Node in a list.  If false is returned then *it is modified to be
      // a valid iterator for node_.
      bool revalidate_if_necessary(TreeIterator* it) {
        GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
        // Force bucket_index_ to be in range.
        bucket_index_ &= (m_->num_buckets_ - 1);
        // Common case: the bucket we think is relevant points to node_.
        if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
        // Less common: the bucket is a linked list with node_ somewhere in it,
        // but not at the head.
        if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
          Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
          while ((l = l->next) != nullptr) {
            if (l == node_) {
              return true;
            }
          }
        }
        // Well, bucket_index_ still might be correct, but probably
        // not.  Revalidate just to be sure.  This case is rare enough that we
        // don't worry about potential optimizations, such as having a custom
        // find-like method that compares Node* instead of TrivialKey.
        iterator_base i(m_->find(*KeyPtrFromNodePtr(node_), it));
        bucket_index_ = i.bucket_index_;
        return m_->TableEntryIsList(bucket_index_);
      }

      Node* node_;
      const InnerMap* m_;
      size_type bucket_index_;
    };

   public:
    using iterator = iterator_base<KeyValuePair>;
    using const_iterator = iterator_base<const KeyValuePair>;

    iterator begin() { return iterator(this); }
    iterator end() { return iterator(); }
    const_iterator begin() const { return const_iterator(this); }
    const_iterator end() const { return const_iterator(); }

    void clear() {
      for (size_type b = 0; b < num_buckets_; b++) {
        if (TableEntryIsNonEmptyList(b)) {
          Node* node = static_cast<Node*>(table_[b]);
          table_[b] = nullptr;
          do {
            Node* next = node->next;
            DestroyNode(node);
            node = next;
          } while (node != nullptr);
        } else if (TableEntryIsTree(b)) {
          Tree* tree = static_cast<Tree*>(table_[b]);
          GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
          table_[b] = table_[b + 1] = nullptr;
          typename Tree::iterator tree_it = tree->begin();
          do {
            Node* node = NodePtrFromKeyPtr(*tree_it);
            typename Tree::iterator next = tree_it;
            ++next;
            tree->erase(tree_it);
            DestroyNode(node);
            tree_it = next;
          } while (tree_it != tree->end());
          DestroyTree(tree);
          b++;
        }
      }
      num_elements_ = 0;
      index_of_first_non_null_ = num_buckets_;
    }

    const hasher& hash_function() const { return *this; }

    static size_type max_size() {
      return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
    }
    size_type size() const { return num_elements_; }
    bool empty() const { return size() == 0; }

    iterator find(const TrivialKey& k) { return iterator(FindHelper(k).first); }
    const_iterator find(const TrivialKey& k) const { return find(k, nullptr); }
    bool contains(const TrivialKey& k) const { return find(k) != end(); }

    // In traditional C++ style, this performs "insert if not present."
    std::pair<iterator, bool> insert(const KeyValuePair& kv) {
      std::pair<const_iterator, size_type> p = FindHelper(kv.key());
      // Case 1: key was already present.
      if (p.first.node_ != nullptr)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(kv.key());
      }
      const size_type b = p.second;  // bucket number
      Node* node = Alloc<Node>(1);
      alloc_.construct(&node->kv, kv);
      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    // The same, but if an insertion is necessary then the value portion of the
    // inserted key-value pair is left uninitialized.
    std::pair<iterator, bool> insert(const TrivialKey& k) {
      std::pair<const_iterator, size_type> p = FindHelper(k);
      // Case 1: key was already present.
      if (p.first.node_ != nullptr)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(k);
      }
      const size_type b = p.second;  // bucket number
      Node* node = Alloc<Node>(1);
      using KeyAllocator =
          typename Allocator::template rebind<TrivialKey>::other;
      KeyAllocator(alloc_).construct(&node->kv.key(), k);
      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    // Returns iterator so that outer map can update the TrivialKey to point to
    // the Key inside value_type in case TrivialKey is a view type.
    iterator operator[](const TrivialKey& k) {
      KeyValuePair kv(k, Value());
      return insert(kv).first;
    }

    void erase(iterator it) {
      GOOGLE_DCHECK_EQ(it.m_, this);
      typename Tree::iterator tree_it;
      const bool is_list = it.revalidate_if_necessary(&tree_it);
      size_type b = it.bucket_index_;
      Node* const item = it.node_;
      if (is_list) {
        GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
        Node* head = static_cast<Node*>(table_[b]);
        head = EraseFromLinkedList(item, head);
        table_[b] = static_cast<void*>(head);
      } else {
        GOOGLE_DCHECK(TableEntryIsTree(b));
        Tree* tree = static_cast<Tree*>(table_[b]);
        tree->erase(*tree_it);
        if (tree->empty()) {
          // Force b to be the minimum of b and b ^ 1.  This is important
          // only because we want index_of_first_non_null_ to be correct.
          b &= ~static_cast<size_type>(1);
          DestroyTree(tree);
          table_[b] = table_[b + 1] = nullptr;
        }
      }
      DestroyNode(item);
      --num_elements_;
      if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
        while (index_of_first_non_null_ < num_buckets_ &&
               table_[index_of_first_non_null_] == nullptr) {
          ++index_of_first_non_null_;
        }
      }
    }

   private:
    const_iterator find(const TrivialKey& k, TreeIterator* it) const {
      return FindHelper(k, it).first;
    }
    std::pair<const_iterator, size_type> FindHelper(const TrivialKey& k) const {
      return FindHelper(k, nullptr);
    }
    std::pair<const_iterator, size_type> FindHelper(const TrivialKey& k,
                                                    TreeIterator* it) const {
      size_type b = BucketNumber(k);
      if (TableEntryIsNonEmptyList(b)) {
        Node* node = static_cast<Node*>(table_[b]);
        do {
          if (IsMatch(*KeyPtrFromNodePtr(node), k)) {
            return std::make_pair(const_iterator(node, this, b), b);
          } else {
            node = node->next;
          }
        } while (node != nullptr);
      } else if (TableEntryIsTree(b)) {
        GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
        b &= ~static_cast<size_t>(1);
        Tree* tree = static_cast<Tree*>(table_[b]);
        TrivialKey* key = const_cast<TrivialKey*>(&k);
        typename Tree::iterator tree_it = tree->find(key);
        if (tree_it != tree->end()) {
          if (it != nullptr) *it = tree_it;
          return std::make_pair(const_iterator(tree_it, this, b), b);
        }
      }
      return std::make_pair(end(), b);
    }

    // Insert the given Node in bucket b.  If that would make bucket b too big,
    // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
    // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
    // bucket.  num_elements_ is not modified.
    iterator InsertUnique(size_type b, Node* node) {
      GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
             table_[index_of_first_non_null_] != nullptr);
      // In practice, the code that led to this point may have already
      // determined whether we are inserting into an empty list, a short list,
      // or whatever.  But it's probably cheap enough to recompute that here;
      // it's likely that we're inserting into an empty or short list.
      iterator result;
      GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end());
      if (TableEntryIsEmpty(b)) {
        result = InsertUniqueInList(b, node);
      } else if (TableEntryIsNonEmptyList(b)) {
        if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
          TreeConvert(b);
          result = InsertUniqueInTree(b, node);
          GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
        } else {
          // Insert into a pre-existing list.  This case cannot modify
          // index_of_first_non_null_, so we skip the code to update it.
          return InsertUniqueInList(b, node);
        }
      } else {
        // Insert into a pre-existing tree.  This case cannot modify
        // index_of_first_non_null_, so we skip the code to update it.
        return InsertUniqueInTree(b, node);
      }
      // parentheses around (std::min) prevents macro expansion of min(...)
      index_of_first_non_null_ =
          (std::min)(index_of_first_non_null_, result.bucket_index_);
      return result;
    }

    // Helper for InsertUnique.  Handles the case where bucket b is a
    // not-too-long linked list.
    iterator InsertUniqueInList(size_type b, Node* node) {
      node->next = static_cast<Node*>(table_[b]);
      table_[b] = static_cast<void*>(node);
      return iterator(node, this, b);
    }

    // Helper for InsertUnique.  Handles the case where bucket b points to a
    // Tree.
    iterator InsertUniqueInTree(size_type b, Node* node) {
      GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
      // Maintain the invariant that node->next is null for all Nodes in Trees.
      node->next = nullptr;
      return iterator(
          static_cast<Tree*>(table_[b])->insert(KeyPtrFromNodePtr(node)).first,
          this, b & ~static_cast<size_t>(1));
    }

    // Returns whether it did resize.  Currently this is only used when
    // num_elements_ increases, though it could be used in other situations.
    // It checks for load too low as well as load too high: because any number
    // of erases can occur between inserts, the load could be as low as 0 here.
    // Resizing to a lower size is not always helpful, but failing to do so can
    // destroy the expected big-O bounds for some operations. By having the
    // policy that sometimes we resize down as well as up, clients can easily
    // keep O(size()) = O(number of buckets) if they want that.
    bool ResizeIfLoadIsOutOfRange(size_type new_size) {
      const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
      const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
      const size_type lo_cutoff = hi_cutoff / 4;
      // We don't care how many elements are in trees.  If a lot are,
      // we may resize even though there are many empty buckets.  In
      // practice, this seems fine.
      if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
        if (num_buckets_ <= max_size() / 2) {
          Resize(num_buckets_ * 2);
          return true;
        }
      } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
                                        num_buckets_ > kMinTableSize)) {
        size_type lg2_of_size_reduction_factor = 1;
        // It's possible we want to shrink a lot here... size() could even be 0.
        // So, estimate how much to shrink by making sure we don't shrink so
        // much that we would need to grow the table after a few inserts.
        const size_type hypothetical_size = new_size * 5 / 4 + 1;
        while ((hypothetical_size << lg2_of_size_reduction_factor) <
               hi_cutoff) {
          ++lg2_of_size_reduction_factor;
        }
        size_type new_num_buckets = std::max<size_type>(
            kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
        if (new_num_buckets != num_buckets_) {
          Resize(new_num_buckets);
          return true;
        }
      }
      return false;
    }

    // Resize to the given number of buckets.
    void Resize(size_t new_num_buckets) {
      GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
      void** const old_table = table_;
      const size_type old_table_size = num_buckets_;
      num_buckets_ = new_num_buckets;
      table_ = CreateEmptyTable(num_buckets_);
      const size_type start = index_of_first_non_null_;
      index_of_first_non_null_ = num_buckets_;
      for (size_type i = start; i < old_table_size; i++) {
        if (TableEntryIsNonEmptyList(old_table, i)) {
          TransferList(old_table, i);
        } else if (TableEntryIsTree(old_table, i)) {
          TransferTree(old_table, i++);
        }
      }
      Dealloc<void*>(old_table, old_table_size);
    }

    void TransferList(void* const* table, size_type index) {
      Node* node = static_cast<Node*>(table[index]);
      do {
        Node* next = node->next;
        InsertUnique(BucketNumber(*KeyPtrFromNodePtr(node)), node);
        node = next;
      } while (node != nullptr);
    }

    void TransferTree(void* const* table, size_type index) {
      Tree* tree = static_cast<Tree*>(table[index]);
      typename Tree::iterator tree_it = tree->begin();
      do {
        Node* node = NodePtrFromKeyPtr(*tree_it);
        InsertUnique(BucketNumber(**tree_it), node);
      } while (++tree_it != tree->end());
      DestroyTree(tree);
    }

    Node* EraseFromLinkedList(Node* item, Node* head) {
      if (head == item) {
        return head->next;
      } else {
        head->next = EraseFromLinkedList(item, head->next);
        return head;
      }
    }

    bool TableEntryIsEmpty(size_type b) const {
      return TableEntryIsEmpty(table_, b);
    }
    bool TableEntryIsNonEmptyList(size_type b) const {
      return TableEntryIsNonEmptyList(table_, b);
    }
    bool TableEntryIsTree(size_type b) const {
      return TableEntryIsTree(table_, b);
    }
    bool TableEntryIsList(size_type b) const {
      return TableEntryIsList(table_, b);
    }
    static bool TableEntryIsEmpty(void* const* table, size_type b) {
      return table[b] == nullptr;
    }
    static bool TableEntryIsNonEmptyList(void* const* table, size_type b) {
      return table[b] != nullptr && table[b] != table[b ^ 1];
    }
    static bool TableEntryIsTree(void* const* table, size_type b) {
      return !TableEntryIsEmpty(table, b) &&
             !TableEntryIsNonEmptyList(table, b);
    }
    static bool TableEntryIsList(void* const* table, size_type b) {
      return !TableEntryIsTree(table, b);
    }

    void TreeConvert(size_type b) {
      GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
      typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
      Tree* tree = tree_allocator.allocate(1);
      // We want to use the three-arg form of construct, if it exists, but we
      // create a temporary and use the two-arg construct that's known to exist.
      // It's clunky, but the compiler should be able to generate more-or-less
      // the same code.
      tree_allocator.construct(
          tree, Tree(typename Tree::key_compare(), KeyPtrAllocator(alloc_)));
      // Now the tree is ready to use.
      size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
      GOOGLE_DCHECK_EQ(count, tree->size());
      table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
    }

    // Copy a linked list in the given bucket to a tree.
    // Returns the number of things it copied.
    size_type CopyListToTree(size_type b, Tree* tree) {
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      while (node != nullptr) {
        tree->insert(KeyPtrFromNodePtr(node));
        ++count;
        Node* next = node->next;
        node->next = nullptr;
        node = next;
      }
      return count;
    }

    // Return whether table_[b] is a linked list that seems awfully long.
    // Requires table_[b] to point to a non-empty linked list.
    bool TableEntryIsTooLong(size_type b) {
      const size_type kMaxLength = 8;
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      do {
        ++count;
        node = node->next;
      } while (node != nullptr);
      // Invariant: no linked list ever is more than kMaxLength in length.
      GOOGLE_DCHECK_LE(count, kMaxLength);
      return count >= kMaxLength;
    }

    size_type BucketNumber(const TrivialKey& k) const {
      size_type h = hash_function()(k);
      return (h + seed_) & (num_buckets_ - 1);
    }

    bool IsMatch(const TrivialKey& k0, const TrivialKey& k1) const {
      return k0 == k1;
    }

    // Return a power of two no less than max(kMinTableSize, n).
    // Assumes either n < kMinTableSize or n is a power of two.
    size_type TableSize(size_type n) {
      return n < static_cast<size_type>(kMinTableSize)
                 ? static_cast<size_type>(kMinTableSize)
                 : n;
    }

    // Use alloc_ to allocate an array of n objects of type U.
    template <typename U>
    U* Alloc(size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      return alloc_type(alloc_).allocate(n);
    }

    // Use alloc_ to deallocate an array of n objects of type U.
    template <typename U>
    void Dealloc(U* t, size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      alloc_type(alloc_).deallocate(t, n);
    }

    void DestroyNode(Node* node) {
      alloc_.destroy(&node->kv);
      Dealloc<Node>(node, 1);
    }

    void DestroyTree(Tree* tree) {
      typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
      tree_allocator.destroy(tree);
      tree_allocator.deallocate(tree, 1);
    }

    void** CreateEmptyTable(size_type n) {
      GOOGLE_DCHECK(n >= kMinTableSize);
      GOOGLE_DCHECK_EQ(n & (n - 1), 0);
      void** result = Alloc<void*>(n);
      memset(result, 0, n * sizeof(result[0]));
      return result;
    }

    // Return a randomish value.
    size_type Seed() const {
      size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this));
#if defined(__x86_64__) && defined(__GNUC__) && \
    !defined(GOOGLE_PROTOBUF_NO_RDTSC)
      uint32 hi, lo;
      asm("rdtsc" : "=a"(lo), "=d"(hi));
      s += ((static_cast<uint64>(hi) << 32) | lo);
#endif
      return s;
    }

    friend class Arena;
    using InternalArenaConstructable_ = void;
    using DestructorSkippable_ = void;

    size_type num_elements_;
    size_type num_buckets_;
    size_type seed_;
    size_type index_of_first_non_null_;
    void** table_;  // an array with num_buckets_ entries
    Allocator alloc_;
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
  };  // end of class InnerMap

 public:
  // Iterators
  class const_iterator {
    using InnerIt = typename InnerMap::const_iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = const value_type*;
    using reference = const value_type&;

    const_iterator() {}
    explicit const_iterator(const InnerIt& it) : it_(it) {}

    const_reference operator*() const { return *it_->value(); }
    const_pointer operator->() const { return &(operator*()); }

    const_iterator& operator++() {
      ++it_;
      return *this;
    }
    const_iterator operator++(int) { return const_iterator(it_++); }

    friend bool operator==(const const_iterator& a, const const_iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
      return !(a == b);
    }

   private:
    InnerIt it_;
  };

  class iterator {
    using InnerIt = typename InnerMap::iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = value_type*;
    using reference = value_type&;

    iterator() {}
    explicit iterator(const InnerIt& it) : it_(it) {}

    reference operator*() const { return *it_->value(); }
    pointer operator->() const { return &(operator*()); }

    iterator& operator++() {
      ++it_;
      return *this;
    }
    iterator operator++(int) { return iterator(it_++); }

    // Allow implicit conversion to const_iterator.
    operator const_iterator() const {  // NOLINT(runtime/explicit)
      return const_iterator(typename InnerMap::const_iterator(it_));
    }

    friend bool operator==(const iterator& a, const iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const iterator& a, const iterator& b) {
      return !(a == b);
    }

   private:
    friend class Map;

    InnerIt it_;
  };

  iterator begin() { return iterator(elements_->begin()); }
  iterator end() { return iterator(elements_->end()); }
  const_iterator begin() const {
    return const_iterator(iterator(elements_->begin()));
  }
  const_iterator end() const {
    return const_iterator(iterator(elements_->end()));
  }
  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  // Capacity
  size_type size() const { return elements_->size(); }
  bool empty() const { return size() == 0; }

  // Element access
  T& operator[](const key_type& key) {
    typename InnerMap::iterator it = (*elements_)[key];
    value_type** value = &it->value();
    if (*value == nullptr) {
      *value = CreateValueTypeInternal(key);
      // We need to update the key in case it's a view type.
      it->key() = (*value)->first;
      internal::MapValueInitializer<is_proto_enum<T>::value, T>::Initialize(
          (*value)->second, default_enum_value_);
    }
    return (*value)->second;
  }
  const T& at(const key_type& key) const {
    const_iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << key;
    return it->second;
  }
  T& at(const key_type& key) {
    iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << key;
    return it->second;
  }

  // Lookup
  size_type count(const key_type& key) const {
    const_iterator it = find(key);
    GOOGLE_DCHECK(it == end() || key == it->first);
    return it == end() ? 0 : 1;
  }
  const_iterator find(const key_type& key) const {
    return const_iterator(iterator(elements_->find(key)));
  }
  iterator find(const key_type& key) { return iterator(elements_->find(key)); }
  bool contains(const Key& key) const { return elements_->contains(key); }
  std::pair<const_iterator, const_iterator> equal_range(
      const key_type& key) const {
    const_iterator it = find(key);
    if (it == end()) {
      return std::pair<const_iterator, const_iterator>(it, it);
    } else {
      const_iterator begin = it++;
      return std::pair<const_iterator, const_iterator>(begin, it);
    }
  }
  std::pair<iterator, iterator> equal_range(const key_type& key) {
    iterator it = find(key);
    if (it == end()) {
      return std::pair<iterator, iterator>(it, it);
    } else {
      iterator begin = it++;
      return std::pair<iterator, iterator>(begin, it);
    }
  }

  // insert
  std::pair<iterator, bool> insert(const value_type& value) {
    std::pair<typename InnerMap::iterator, bool> p =
        elements_->insert(value.first);
    if (p.second) {
      p.first->value() = CreateValueTypeInternal(value);
      // We need to update the key in case it's a view type.
      p.first->key() = p.first->value()->first;
    }
    return std::pair<iterator, bool>(iterator(p.first), p.second);
  }
  template <class InputIt>
  void insert(InputIt first, InputIt last) {
    for (InputIt it = first; it != last; ++it) {
      iterator exist_it = find(it->first);
      if (exist_it == end()) {
        operator[](it->first) = it->second;
      }
    }
  }
  void insert(std::initializer_list<value_type> values) {
    insert(values.begin(), values.end());
  }

  // Erase and clear
  size_type erase(const key_type& key) {
    iterator it = find(key);
    if (it == end()) {
      return 0;
    } else {
      erase(it);
      return 1;
    }
  }
  iterator erase(iterator pos) {
    value_type* value = pos.operator->();
    iterator i = pos++;
    elements_->erase(i.it_);
    // Note: we need to delete the value after erasing from the inner map
    // because the inner map's key may be a view of the value's key.
    if (arena_ == nullptr) delete value;
    return pos;
  }
  void erase(iterator first, iterator last) {
    while (first != last) {
      first = erase(first);
    }
  }
  void clear() { erase(begin(), end()); }

  // Assign
  Map& operator=(const Map& other) {
    if (this != &other) {
      clear();
      insert(other.begin(), other.end());
    }
    return *this;
  }

  void swap(Map& other) {
    if (arena_ == other.arena_) {
      std::swap(default_enum_value_, other.default_enum_value_);
      std::swap(elements_, other.elements_);
    } else {
      // TODO(zuguang): optimize this. The temporary copy can be allocated
      // in the same arena as the other message, and the "other = copy" can
      // be replaced with the fast-path swap above.
      Map copy = *this;
      *this = other;
      other = copy;
    }
  }

  // Access to hasher.  Currently this returns a copy, but it may
  // be modified to return a const reference in the future.
  hasher hash_function() const { return elements_->hash_function(); }

 private:
  // Set default enum value only for proto2 map field whose value is enum type.
  void SetDefaultEnumValue(int default_enum_value) {
    default_enum_value_ = default_enum_value;
  }

  value_type* CreateValueTypeInternal(const Key& key) {
    if (arena_ == nullptr) {
      return new value_type(key);
    } else {
      value_type* value = reinterpret_cast<value_type*>(
          Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
      Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_, key);
      Arena::CreateInArenaStorage(&value->second, arena_);
      return value;
    }
  }

  value_type* CreateValueTypeInternal(const value_type& value) {
    if (arena_ == nullptr) {
      return new value_type(value);
    } else {
      value_type* p = reinterpret_cast<value_type*>(
          Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
      Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_,
                                  value.first);
      Arena::CreateInArenaStorage(&p->second, arena_);
      p->second = value.second;
      return p;
    }
  }

  Arena* arena_;
  int default_enum_value_;
  InnerMap* elements_;

  friend class Arena;
  using InternalArenaConstructable_ = void;
  using DestructorSkippable_ = void;
  template <typename Derived, typename K, typename V,
            internal::WireFormatLite::FieldType key_wire_type,
            internal::WireFormatLite::FieldType value_wire_type,
            int default_enum_value>
  friend class internal::MapFieldLite;
};

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_MAP_H__