OsiSolverInterface.hpp 76.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef OsiSolverInterface_H
#define OsiSolverInterface_H

#include <cstdlib>
#include <string>
#include <vector>

#include "CoinTypes.hpp"
#include "CoinMessageHandler.hpp"
#include "CoinPackedVectorBase.hpp"
#include "CoinPackedMatrix.hpp"
#include "CoinWarmStart.hpp"
#include "CoinFinite.hpp"
#include "CoinError.hpp"

#include "OsiCollections.hpp"
#include "OsiSolverParameters.hpp"

class CoinSnapshot;
class CoinLpIO;
class CoinMpsIO;

class OsiCuts;
class OsiAuxInfo;
class OsiRowCut;
class OsiRowCutDebugger;
class CoinSet;
class CoinBuild;
class CoinModel;
class OsiSolverBranch;
class OsiSolverResult;
class OsiObject;

//#############################################################################

/*! \brief Abstract Base Class for describing an interface to a solver.

  Many OsiSolverInterface query methods return a const pointer to the
  requested read-only data. If the model data is changed or the solver
  is called, these pointers may no longer be valid and should be 
  refreshed by invoking the member function to obtain an updated copy
  of the pointer.
  For example:
  \code
      OsiSolverInterface solverInterfacePtr ;
      const double * ruBnds = solverInterfacePtr->getRowUpper();
      solverInterfacePtr->applyCuts(someSetOfCuts);
      // ruBnds is no longer a valid pointer and must be refreshed
      ruBnds = solverInterfacePtr->getRowUpper();
  \endcode

  Querying a problem that has no data associated with it will result in
  zeros for the number of rows and columns, and NULL pointers from
  the methods that return vectors.
*/

class OsiSolverInterface {
  friend void OsiSolverInterfaceCommonUnitTest(
    const OsiSolverInterface *emptySi,
    const std::string &mpsDir,
    const std::string &netlibDir);
  friend void OsiSolverInterfaceMpsUnitTest(
    const std::vector< OsiSolverInterface * > &vecSiP,
    const std::string &mpsDir);

public:
  /// Internal class for obtaining status from the applyCuts method
  class ApplyCutsReturnCode {
    friend class OsiSolverInterface;
    friend class OsiClpSolverInterface;
    friend class OsiGrbSolverInterface;

  public:
    ///@name Constructors and desctructors
    //@{
    /// Default constructor
    ApplyCutsReturnCode()
      : intInconsistent_(0)
      , extInconsistent_(0)
      , infeasible_(0)
      , ineffective_(0)
      , applied_(0)
    {
    }
    /// Copy constructor
    ApplyCutsReturnCode(const ApplyCutsReturnCode &rhs)
      : intInconsistent_(rhs.intInconsistent_)
      , extInconsistent_(rhs.extInconsistent_)
      , infeasible_(rhs.infeasible_)
      , ineffective_(rhs.ineffective_)
      , applied_(rhs.applied_)
    {
    }
    /// Assignment operator
    ApplyCutsReturnCode &operator=(const ApplyCutsReturnCode &rhs)
    {
      if (this != &rhs) {
        intInconsistent_ = rhs.intInconsistent_;
        extInconsistent_ = rhs.extInconsistent_;
        infeasible_ = rhs.infeasible_;
        ineffective_ = rhs.ineffective_;
        applied_ = rhs.applied_;
      }
      return *this;
    }
    /// Destructor
    ~ApplyCutsReturnCode() {}
    //@}

    /**@name Accessing return code attributes */
    //@{
    /// Number of logically inconsistent cuts
    inline int getNumInconsistent() const
    {
      return intInconsistent_;
    }
    /// Number of cuts inconsistent with the current model
    inline int getNumInconsistentWrtIntegerModel() const
    {
      return extInconsistent_;
    }
    /// Number of cuts that cause obvious infeasibility
    inline int getNumInfeasible() const
    {
      return infeasible_;
    }
    /// Number of redundant or ineffective cuts
    inline int getNumIneffective() const
    {
      return ineffective_;
    }
    /// Number of cuts applied
    inline int getNumApplied() const
    {
      return applied_;
    }
    //@}

  private:
    /**@name Private methods */
    //@{
    /// Increment logically inconsistent cut counter
    inline void incrementInternallyInconsistent() { intInconsistent_++; }
    /// Increment model-inconsistent counter
    inline void incrementExternallyInconsistent() { extInconsistent_++; }
    /// Increment infeasible cut counter
    inline void incrementInfeasible() { infeasible_++; }
    /// Increment ineffective cut counter
    inline void incrementIneffective() { ineffective_++; }
    /// Increment applied cut counter
    inline void incrementApplied() { applied_++; }
    //@}

    ///@name Private member data
    //@{
    /// Counter for logically inconsistent cuts
    int intInconsistent_;
    /// Counter for model-inconsistent cuts
    int extInconsistent_;
    /// Counter for infeasible cuts
    int infeasible_;
    /// Counter for ineffective cuts
    int ineffective_;
    /// Counter for applied cuts
    int applied_;
    //@}
  };

  //---------------------------------------------------------------------------

  ///@name Solve methods
  //@{
  /// Solve initial LP relaxation
  virtual void initialSolve() = 0;

  /*! \brief Resolve an LP relaxation after problem modification

      Note the `re-' in `resolve'. initialSolve() should be used to solve the
      problem for the first time.
    */
  virtual void resolve() = 0;

  /// Invoke solver's built-in enumeration algorithm
  virtual void branchAndBound() = 0;

#ifdef CBC_NEXT_VERSION
  /*
      Would it make sense to collect all of these routines in a `MIP Helper'
      section? It'd make it easier for users and implementors to find them.
    */
  /**
       Solve 2**N (N==depth) problems and return solutions and bases.
       There are N branches each of which changes bounds on both sides
       as given by branch.  The user should provide an array of (empty)
       results which will be filled in.  See OsiSolveResult for more details
       (in OsiSolveBranch.?pp) but it will include a basis and primal solution.

       The order of results is left to right at feasible leaf nodes so first one
       is down, down, .....

       Returns number of feasible leaves.  Also sets number of solves done and number
       of iterations.

       This is provided so a solver can do faster.

       If forceBranch true then branch done even if satisfied
    */
  virtual int solveBranches(int depth, const OsiSolverBranch *branch,
    OsiSolverResult *result,
    int &numberSolves, int &numberIterations,
    bool forceBranch = false);
#endif
  //@}

  //---------------------------------------------------------------------------
  /**@name Parameter set/get methods

     The set methods return true if the parameter was set to the given value,
     false otherwise. When a set method returns false, the original value (if
     any) should be unchanged.  There can be various reasons for failure: the
     given parameter is not applicable for the solver (e.g., refactorization
     frequency for the volume algorithm), the parameter is not yet
     implemented for the solver or simply the value of the parameter is out
     of the range the solver accepts. If a parameter setting call returns
     false check the details of your solver.

     The get methods return true if the given parameter is applicable for the
     solver and is implemented. In this case the value of the parameter is
     returned in the second argument. Otherwise they return false.

     \note
     There is a default implementation of the set/get
     methods, namely to store/retrieve the given value using an array in the
     base class. A specific solver implementation can use this feature, for
     example, to store parameters that should be used later on. Implementors
     of a solver interface should overload these functions to provide the
     proper interface to and accurately reflect the capabilities of a
     specific solver.

     The format for hints is slightly different in that a boolean specifies
     the sense of the hint and an enum specifies the strength of the hint.
     Hints should be initialised when a solver is instantiated.
     (See OsiSolverParameters.hpp for defined hint parameters and strength.)
     When specifying the sense of the hint, a value of true means to work with
     the hint, false to work against it.  For example,
     <ul>
       <li> \code setHintParam(OsiDoScale,true,OsiHintTry) \endcode
	    is a mild suggestion to the solver to scale the constraint
	    system.
       <li> \code setHintParam(OsiDoScale,false,OsiForceDo) \endcode
	    tells the solver to disable scaling, or throw an exception if
	    it cannot comply.
     </ul>
     As another example, a solver interface could use the value and strength
     of the \c OsiDoReducePrint hint to adjust the amount of information
     printed by the interface and/or solver.  The extent to which a solver
     obeys hints is left to the solver.  The value and strength returned by
     \c getHintParam will match the most recent call to \c setHintParam,
     and will not necessarily reflect the solver's ability to comply with the
     hint.  If the hint strength is \c OsiForceDo, the solver is required to
     throw an exception if it cannot perform the specified action.

     \note
     As with the other set/get methods, there is a default implementation
     which maintains arrays in the base class for hint sense and strength.
     The default implementation does not store the \c otherInformation
     pointer, and always throws an exception for strength \c OsiForceDo.
     Implementors of a solver interface should override these functions to
     provide the proper interface to and accurately reflect the capabilities
     of a specific solver.
  */
  //@{
  //! Set an integer parameter
  virtual bool setIntParam(OsiIntParam key, int value)
  {
    if (key == OsiLastIntParam)
      return (false);
    intParam_[key] = value;
    return true;
  }
  //! Set a double parameter
  virtual bool setDblParam(OsiDblParam key, double value)
  {
    if (key == OsiLastDblParam)
      return (false);
    dblParam_[key] = value;
    return true;
  }
  //! Set a string parameter
  virtual bool setStrParam(OsiStrParam key, const std::string &value)
  {
    if (key == OsiLastStrParam)
      return (false);
    strParam_[key] = value;
    return true;
  }
  /*! \brief Set a hint parameter

      The \c otherInformation parameter can be used to pass in an arbitrary
      block of information which is interpreted by the OSI and the underlying
      solver.  Users are cautioned that this hook is solver-specific.

      Implementors:
      The default implementation completely ignores \c otherInformation and
      always throws an exception for OsiForceDo. This is almost certainly not
      the behaviour you want; you really should override this method.
    */
  virtual bool setHintParam(OsiHintParam key, bool yesNo = true,
    OsiHintStrength strength = OsiHintTry,
    void * /*otherInformation*/ = NULL)
  {
    if (key == OsiLastHintParam)
      return false;
    hintParam_[key] = yesNo;
    hintStrength_[key] = strength;
    if (strength == OsiForceDo)
      throw CoinError("OsiForceDo illegal",
        "setHintParam", "OsiSolverInterface");
    return true;
  }
  //! Get an integer parameter
  virtual bool getIntParam(OsiIntParam key, int &value) const
  {
    if (key == OsiLastIntParam)
      return (false);
    value = intParam_[key];
    return true;
  }
  //! Get a double parameter
  virtual bool getDblParam(OsiDblParam key, double &value) const
  {
    if (key == OsiLastDblParam)
      return (false);
    value = dblParam_[key];
    return true;
  }
  //! Get a string parameter
  virtual bool getStrParam(OsiStrParam key, std::string &value) const
  {
    if (key == OsiLastStrParam)
      return (false);
    value = strParam_[key];
    return true;
  }
  /*! \brief Get a hint parameter (all information)

	Return all available information for the hint: sense, strength,
	and any extra information associated with the hint.

	Implementors: The default implementation will always set
	\c otherInformation to NULL. This is almost certainly not the
	behaviour you want; you really should override this method.
    */
  virtual bool getHintParam(OsiHintParam key, bool &yesNo,
    OsiHintStrength &strength,
    void *&otherInformation) const
  {
    if (key == OsiLastHintParam)
      return false;
    yesNo = hintParam_[key];
    strength = hintStrength_[key];
    otherInformation = NULL;
    return true;
  }
  /*! \brief Get a hint parameter (sense and strength only)

	Return only the sense and strength of the hint.
    */
  virtual bool getHintParam(OsiHintParam key, bool &yesNo,
    OsiHintStrength &strength) const
  {
    if (key == OsiLastHintParam)
      return false;
    yesNo = hintParam_[key];
    strength = hintStrength_[key];
    return true;
  }
  /*! \brief Get a hint parameter (sense only)

	Return only the sense (true/false) of the hint.
    */
  virtual bool getHintParam(OsiHintParam key, bool &yesNo) const
  {
    if (key == OsiLastHintParam)
      return false;
    yesNo = hintParam_[key];
    return true;
  }
  /*! \brief Copy all parameters in this section from one solver to another

      Note that the current implementation also copies the appData block,
      message handler, and rowCutDebugger. Arguably these should have
      independent copy methods.
    */
  void copyParameters(OsiSolverInterface &rhs);

  /** \brief Return the integrality tolerance of the underlying solver.
    
	We should be able to get an integrality tolerance, but
        until that time just use the primal tolerance

	\todo
	This method should be replaced; it's architecturally wrong.  This
	should be an honest dblParam with a keyword. Underlying solvers
	that do not support integer variables should return false for set and
	get on this parameter.  Underlying solvers that support integrality
	should add this to the parameters they support, using whatever
	tolerance is appropriate.  -lh, 091021-
    */
  inline double getIntegerTolerance() const
  {
    return dblParam_[OsiPrimalTolerance];
  }
  //@}

  //---------------------------------------------------------------------------
  ///@name Methods returning info on how the solution process terminated
  //@{
  /// Are there numerical difficulties?
  virtual bool isAbandoned() const = 0;
  /// Is optimality proven?
  virtual bool isProvenOptimal() const = 0;
  /// Is primal infeasibility proven?
  virtual bool isProvenPrimalInfeasible() const = 0;
  /// Is dual infeasibility proven?
  virtual bool isProvenDualInfeasible() const = 0;
  /// Is the given primal objective limit reached?
  virtual bool isPrimalObjectiveLimitReached() const;
  /// Is the given dual objective limit reached?
  virtual bool isDualObjectiveLimitReached() const;
  /// Iteration limit reached?
  virtual bool isIterationLimitReached() const = 0;
  //@}

  //---------------------------------------------------------------------------
  /** \name Warm start methods

    Note that the warm start methods return a generic CoinWarmStart object.
    The precise characteristics of this object are solver-dependent. Clients
    who wish to maintain a maximum degree of solver independence should take
    care to avoid unnecessary assumptions about the properties of a warm start
    object.
  */
  //@{
  /*! \brief Get an empty warm start object
      
      This routine returns an empty warm start object. Its purpose is
      to provide a way for a client to acquire a warm start object of the
      appropriate type for the solver, which can then be resized and modified
      as desired.
    */

  virtual CoinWarmStart *getEmptyWarmStart() const = 0;

  /** \brief Get warm start information.

      Return warm start information for the current state of the solver
      interface. If there is no valid warm start information, an empty warm
      start object wil be returned.
    */
  virtual CoinWarmStart *getWarmStart() const = 0;
  /** \brief Get warm start information.

      Return warm start information for the current state of the solver
      interface. If there is no valid warm start information, an empty warm
      start object wil be returned.  This does not necessarily create an 
      object - may just point to one.  must Delete set true if user
      should delete returned object.
    */
  virtual CoinWarmStart *getPointerToWarmStart(bool &mustDelete);

  /** \brief Set warm start information.
    
      Return true or false depending on whether the warm start information was
      accepted or not.
      By definition, a call to setWarmStart with a null parameter should
      cause the solver interface to refresh its warm start information
      from the underlying solver.
   */
  virtual bool setWarmStart(const CoinWarmStart *warmstart) = 0;
  //@}

  //---------------------------------------------------------------------------
  /**@name Hot start methods
  
     Primarily used in strong branching. The user can create a hot start
     object --- a snapshot of the optimization process --- then reoptimize
     over and over again, starting from the same point.

     \note
     <ul>
     <li> Between hot started optimizations only bound changes are allowed.
     <li> The copy constructor and assignment operator should NOT copy any
          hot start information.
     <li> The default implementation simply extracts a warm start object in
          \c markHotStart, resets to the warm start object in
	  \c solveFromHotStart, and deletes the warm start object in
	  \c unmarkHotStart.
	  <em>Actual solver implementations are encouraged to do better.</em>
     </ul>

  */
  //@{
  /// Create a hot start snapshot of the optimization process.
  virtual void markHotStart();
  /// Optimize starting from the hot start snapshot.
  virtual void solveFromHotStart();
  /// Delete the hot start snapshot.
  virtual void unmarkHotStart();
  //@}

  //---------------------------------------------------------------------------
  /**@name Problem query methods

   Querying a problem that has no data associated with it will result in
   zeros for the number of rows and columns, and NULL pointers from the
   methods that return vectors.

   Const pointers returned from any data-query method are valid as long as
   the data is unchanged and the solver is not called.
  */
  //@{
  /// Get the number of columns
  virtual int getNumCols() const = 0;

  /// Get the number of rows
  virtual int getNumRows() const = 0;

  /// Get the number of nonzero elements
  virtual CoinBigIndex getNumElements() const = 0;

  /// Get the number of integer variables
  virtual int getNumIntegers() const;

  /// Get a pointer to an array[getNumCols()] of column lower bounds
  virtual const double *getColLower() const = 0;

  /// Get a pointer to an array[getNumCols()] of column upper bounds
  virtual const double *getColUpper() const = 0;

  /*! \brief Get a pointer to an array[getNumRows()] of row constraint senses.

      <ul>
      <li>'L': <= constraint
      <li>'E': =  constraint
      <li>'G': >= constraint
      <li>'R': ranged constraint
      <li>'N': free constraint
      </ul>
    */
  virtual const char *getRowSense() const = 0;

  /*! \brief Get a pointer to an array[getNumRows()] of row right-hand sides

      <ul>
	<li> if getRowSense()[i] == 'L' then
	     getRightHandSide()[i] == getRowUpper()[i]
	<li> if getRowSense()[i] == 'G' then
	     getRightHandSide()[i] == getRowLower()[i]
	<li> if getRowSense()[i] == 'R' then
	     getRightHandSide()[i] == getRowUpper()[i]
	<li> if getRowSense()[i] == 'N' then
	     getRightHandSide()[i] == 0.0
      </ul>
    */
  virtual const double *getRightHandSide() const = 0;

  /*! \brief Get a pointer to an array[getNumRows()] of row ranges.

      <ul>
	  <li> if getRowSense()[i] == 'R' then
		  getRowRange()[i] == getRowUpper()[i] - getRowLower()[i]
	  <li> if getRowSense()[i] != 'R' then
		  getRowRange()[i] is 0.0
	</ul>
    */
  virtual const double *getRowRange() const = 0;

  /// Get a pointer to an array[getNumRows()] of row lower bounds
  virtual const double *getRowLower() const = 0;

  /// Get a pointer to an array[getNumRows()] of row upper bounds
  virtual const double *getRowUpper() const = 0;

  /*! \brief Get a pointer to an array[getNumCols()] of objective
	       function coefficients.
    */
  virtual const double *getObjCoefficients() const = 0;

  /*! \brief Get the objective function sense
    
      -  1 for minimisation (default)
      - -1 for maximisation
    */
  virtual double getObjSense() const = 0;

  /// Return true if the variable is continuous
  virtual bool isContinuous(int colIndex) const = 0;

  /// Return true if the variable is binary
  virtual bool isBinary(int colIndex) const;

  /*! \brief Return true if the variable is integer.

      This method returns true if the variable is binary or general integer.
    */
  virtual bool isInteger(int colIndex) const;

  /// Return true if the variable is general integer
  virtual bool isIntegerNonBinary(int colIndex) const;

  /// Return true if the variable is binary and not fixed
  virtual bool isFreeBinary(int colIndex) const;

  /*! \brief Return an array[getNumCols()] of column types

      \deprecated See #getColType
    */
  inline const char *columnType(bool refresh = false) const
  {
    return getColType(refresh);
  }

  /// Set column type
  inline void setColumnType(int iColumn, char type)
  {
    if (!columnType_)
      getColType(true);
    columnType_[iColumn] = type;
  }

  /*! \brief Return an array[getNumCols()] of column types

       - 0 - continuous
       - 1 - binary
       - 2 - general integer
       - 3 - if supported - semi-continuous
       - 4 - if supported - semi-continuous integer
      
      If \p refresh is true, the classification of integer variables as
      binary or general integer will be reevaluated. If the current bounds
      are [0,1], or if the variable is fixed at 0 or 1, it will be classified
      as binary, otherwise it will be classified as general integer.
    */
  virtual const char *getColType(bool refresh = false) const;

  /// Get a pointer to a row-wise copy of the matrix
  virtual const CoinPackedMatrix *getMatrixByRow() const = 0;

  /// Get a pointer to a column-wise copy of the matrix
  virtual const CoinPackedMatrix *getMatrixByCol() const = 0;

  /*! \brief Get a pointer to a mutable row-wise copy of the matrix.
    
      Returns NULL if the request is not meaningful (i.e., the OSI will not
      recognise any modifications to the matrix).
    */
  virtual CoinPackedMatrix *getMutableMatrixByRow() const { return NULL; }

  /*! \brief Get a pointer to a mutable column-wise copy of the matrix
    
      Returns NULL if the request is not meaningful (i.e., the OSI will not
      recognise any modifications to the matrix).
    */
  virtual CoinPackedMatrix *getMutableMatrixByCol() const { return NULL; }

  /// Get the solver's value for infinity
  virtual double getInfinity() const = 0;
  //@}

  /**@name Solution query methods */
  //@{
  /// Get a pointer to an array[getNumCols()] of primal variable values
  virtual const double *getColSolution() const = 0;

  /** Get a pointer to an array[getNumCols()] of primal variable values
	guaranteed to be between the column lower and upper bounds.
    */
  virtual const double *getStrictColSolution();

  /// Get pointer to array[getNumRows()] of dual variable values
  virtual const double *getRowPrice() const = 0;

  /// Get a pointer to an array[getNumCols()] of reduced costs
  virtual const double *getReducedCost() const = 0;

  /** Get a pointer to array[getNumRows()] of row activity levels.
    
      The row activity for a row is the left-hand side evaluated at the
      current solution.
    */
  virtual const double *getRowActivity() const = 0;

  /// Get the objective function value.
  virtual double getObjValue() const = 0;

  /** Get the number of iterations it took to solve the problem (whatever
	`iteration' means to the solver).
    */
  virtual int getIterationCount() const = 0;

  /** Get as many dual rays as the solver can provide. In case of proven
	primal infeasibility there should (with high probability) be at least
	one.

	The first getNumRows() ray components will always be associated with
	the row duals (as returned by getRowPrice()). If \c fullRay is true,
	the final getNumCols() entries will correspond to the ray components
	associated with the nonbasic variables. If the full ray is requested
	and the method cannot provide it, it will throw an exception.

	\note
	Implementors of solver interfaces note that the double pointers in
	the vector should point to arrays of length getNumRows() (fullRay =
	false) or (getNumRows()+getNumCols()) (fullRay = true) and they should
	be allocated with new[].

	\note
	Clients of solver interfaces note that it is the client's
	responsibility to free the double pointers in the vector using
	delete[]. Clients are reminded that a problem can be dual and primal
	infeasible.
    */
  virtual std::vector< double * > getDualRays(int maxNumRays,
    bool fullRay = false) const = 0;

  /** Get as many primal rays as the solver can provide. In case of proven
	dual infeasibility there should (with high probability) be at least
	one.
   
	\note
	Implementors of solver interfaces note that the double pointers in
	the vector should point to arrays of length getNumCols() and they
	should be allocated with new[].

	\note
	Clients of solver interfaces note that it is the client's
	responsibility to free the double pointers in the vector using
	delete[]. Clients are reminded that a problem can be dual and primal
	infeasible.
    */
  virtual std::vector< double * > getPrimalRays(int maxNumRays) const = 0;

  /** Get vector of indices of primal variables which are integer variables 
	but have fractional values in the current solution. */
  virtual OsiVectorInt getFractionalIndices(const double etol = 1.e-05)
    const;
  //@}

  //-------------------------------------------------------------------------
  /**@name Methods to modify the objective, bounds, and solution

     For functions which take a set of indices as parameters
     (\c setObjCoeffSet(), \c setColSetBounds(), \c setRowSetBounds(),
     \c setRowSetTypes()), the parameters follow the C++ STL iterator
     convention: \c indexFirst points to the first index in the
     set, and \c indexLast points to a position one past the last index
     in the set.
  
  */
  //@{
  /** Set an objective function coefficient */
  virtual void setObjCoeff(int elementIndex, double elementValue) = 0;

  /** Set a set of objective function coefficients */
  virtual void setObjCoeffSet(const int *indexFirst,
    const int *indexLast,
    const double *coeffList);

  /** Set the objective coefficients for all columns.

	array [getNumCols()] is an array of values for the objective.
	This defaults to a series of set operations and is here for speed.
    */
  virtual void setObjective(const double *array);

  /** Set the objective function sense.

        Use 1 for minimisation (default), -1 for maximisation.

	\note
	Implementors note that objective function sense is a parameter of
	the OSI, not a property of the problem. Objective sense can be
	set prior to problem load and should not be affected by loading a
	new problem.
    */
  virtual void setObjSense(double s) = 0;

  /** Set a single column lower bound.
	Use -getInfinity() for -infinity. */
  virtual void setColLower(int elementIndex, double elementValue) = 0;

  /** Set the lower bounds for all columns.

	array [getNumCols()] is an array of values for the lower bounds.
	This defaults to a series of set operations and is here for speed.
    */
  virtual void setColLower(const double *array);

  /** Set a single column upper bound.
	Use getInfinity() for infinity. */
  virtual void setColUpper(int elementIndex, double elementValue) = 0;

  /** Set the upper bounds for all columns.

	array [getNumCols()] is an array of values for the upper bounds.
	This defaults to a series of set operations and is here for speed.
    */
  virtual void setColUpper(const double *array);

  /** Set a single column lower and upper bound.
	The default implementation just invokes setColLower() and
	setColUpper() */
  virtual void setColBounds(int elementIndex,
    double lower, double upper)
  {
    setColLower(elementIndex, lower);
    setColUpper(elementIndex, upper);
  }

  /** Set the upper and lower bounds of a set of columns.

	The default implementation just invokes setColBounds() over and over
	again.  For each column, boundList must contain both a lower and
	upper bound, in that order.
    */
  virtual void setColSetBounds(const int *indexFirst,
    const int *indexLast,
    const double *boundList);

  /** Set a single row lower bound.
	Use -getInfinity() for -infinity. */
  virtual void setRowLower(int elementIndex, double elementValue) = 0;

  /** Set a single row upper bound.
	Use getInfinity() for infinity. */
  virtual void setRowUpper(int elementIndex, double elementValue) = 0;

  /** Set a single row lower and upper bound.
	The default implementation just invokes setRowLower() and
	setRowUpper() */
  virtual void setRowBounds(int elementIndex,
    double lower, double upper)
  {
    setRowLower(elementIndex, lower);
    setRowUpper(elementIndex, upper);
  }

  /** Set the bounds on a set of rows.

	The default implementation just invokes setRowBounds() over and over
	again.  For each row, boundList must contain both a lower and
	upper bound, in that order.
    */
  virtual void setRowSetBounds(const int *indexFirst,
    const int *indexLast,
    const double *boundList);

  /** Set the type of a single row */
  virtual void setRowType(int index, char sense, double rightHandSide,
    double range)
    = 0;

  /** Set the type of a set of rows.
	The default implementation just invokes setRowType()
	over and over again.
    */
  virtual void setRowSetTypes(const int *indexFirst,
    const int *indexLast,
    const char *senseList,
    const double *rhsList,
    const double *rangeList);

  /** Set the primal solution variable values

	colsol[getNumCols()] is an array of values for the primal variables.
	These values are copied to memory owned by the solver interface
	object or the solver.  They will be returned as the result of
	getColSolution() until changed by another call to setColSolution() or
	by a call to any solver routine.  Whether the solver makes use of the
	solution in any way is solver-dependent.
    */
  virtual void setColSolution(const double *colsol) = 0;

  /** Set dual solution variable values

	rowprice[getNumRows()] is an array of values for the dual variables.
	These values are copied to memory owned by the solver interface
	object or the solver.  They will be returned as the result of
	getRowPrice() until changed by another call to setRowPrice() or by a
	call to any solver routine.  Whether the solver makes use of the
	solution in any way is solver-dependent.
    */
  virtual void setRowPrice(const double *rowprice) = 0;

  /** Fix variables at bound based on reduced cost
    
	For variables currently at bound, fix the variable at bound if the
	reduced cost exceeds the gap. Return the number of variables fixed.

	If justInteger is set to false, the routine will also fix continuous
	variables, but the test still assumes a delta of 1.0.
    */
  virtual int reducedCostFix(double gap, bool justInteger = true);
  //@}

  //-------------------------------------------------------------------------
  /**@name Methods to set variable type */
  //@{
  /** Set the index-th variable to be a continuous variable */
  virtual void setContinuous(int index) = 0;
  /** Set the index-th variable to be an integer variable */
  virtual void setInteger(int index) = 0;
  /** Set the variables listed in indices (which is of length len) to be
	continuous variables */
  virtual void setContinuous(const int *indices, int len);
  /** Set the variables listed in indices (which is of length len) to be
	integer variables */
  virtual void setInteger(const int *indices, int len);
  //@}
  //-------------------------------------------------------------------------

  //-------------------------------------------------------------------------

  /*! \brief Data type for name vectors. */
  typedef std::vector< std::string > OsiNameVec;

  /*! \name Methods for row and column names

    Osi defines three name management disciplines: `auto names' (0), `lazy
    names' (1), and `full names' (2). See the description of
    #OsiNameDiscipline for details. Changing the name discipline (via
    setIntParam()) will not automatically add or remove name information,
    but setting the discipline to auto will make existing information
    inaccessible until the discipline is reset to lazy or full.

    By definition, a row index of getNumRows() (<i>i.e.</i>, one larger than
    the largest valid row index) refers to the objective function.

    OSI users and implementors: While the OSI base class can define an
    interface and provide rudimentary support, use of names really depends
    on support by the OsiXXX class to ensure that names are managed
    correctly.  If an OsiXXX class does not support names, it should return
    false for calls to getIntParam() or setIntParam() that reference
    OsiNameDiscipline.
  */
  //@{

  /*! \brief Generate a standard name of the form Rnnnnnnn or Cnnnnnnn
    
      Set \p rc to 'r' for a row name, 'c' for a column name.
      The `nnnnnnn' part is generated from ndx and will contain 7 digits
      by default, padded with zeros if necessary. As a special case,
      ndx = getNumRows() is interpreted as a request for the name of the
      objective function. OBJECTIVE is returned, truncated to digits+1
      characters to match the row and column names.
    */
  virtual std::string dfltRowColName(char rc,
    int ndx, unsigned digits = 7) const;

  /*! \brief Return the name of the objective function */

  virtual std::string getObjName(unsigned maxLen = static_cast< unsigned >(std::string::npos)) const;

  /*! \brief Set the name of the objective function */

  virtual inline void setObjName(std::string name)
  {
    objName_ = name;
  }

  /*! \brief Return the name of the row.

      The routine will <i>always</i> return some name, regardless of the name
      discipline or the level of support by an OsiXXX derived class. Use
      maxLen to limit the length.
    */
  virtual std::string getRowName(int rowIndex,
    unsigned maxLen = static_cast< unsigned >(std::string::npos)) const;

  /*! \brief Return a pointer to a vector of row names

      If the name discipline (#OsiNameDiscipline) is auto, the return value
      will be a vector of length zero. If the name discipline is lazy, the
      vector will contain only names supplied by the client and will be no
      larger than needed to hold those names; entries not supplied will be
      null strings. In particular, the objective name is <i>not</i>
      included in the vector for lazy names. If the name discipline is
      full, the vector will have getNumRows() names, either supplied or
      generated, plus one additional entry for the objective name.
    */
  virtual const OsiNameVec &getRowNames();

  /*! \brief Set a row name

      Quietly does nothing if the name discipline (#OsiNameDiscipline) is
      auto. Quietly fails if the row index is invalid.
    */
  virtual void setRowName(int ndx, std::string name);

  /*! \brief Set multiple row names

      The run of len entries starting at srcNames[srcStart] are installed as
      row names starting at row index tgtStart. The base class implementation
      makes repeated calls to setRowName.
    */
  virtual void setRowNames(OsiNameVec &srcNames,
    int srcStart, int len, int tgtStart);

  /*! \brief Delete len row names starting at index tgtStart

      The specified row names are removed and the remaining row names are
      copied down to close the gap.
    */
  virtual void deleteRowNames(int tgtStart, int len);

  /*! \brief Return the name of the column

      The routine will <i>always</i> return some name, regardless of the name
      discipline or the level of support by an OsiXXX derived class. Use
      maxLen to limit the length.
    */
  virtual std::string getColName(int colIndex,
    unsigned maxLen = static_cast< unsigned >(std::string::npos)) const;

  /*! \brief Return a pointer to a vector of column names

      If the name discipline (#OsiNameDiscipline) is auto, the return value
      will be a vector of length zero. If the name discipline is lazy, the
      vector will contain only names supplied by the client and will be no
      larger than needed to hold those names; entries not supplied will be
      null strings. If the name discipline is full, the vector will have
      getNumCols() names, either supplied or generated.
    */
  virtual const OsiNameVec &getColNames();

  /*! \brief Set a column name

      Quietly does nothing if the name discipline (#OsiNameDiscipline) is
      auto. Quietly fails if the column index is invalid.
    */
  virtual void setColName(int ndx, std::string name);

  /*! \brief Set multiple column names

      The run of len entries starting at srcNames[srcStart] are installed as
      column names starting at column index tgtStart. The base class
      implementation makes repeated calls to setColName.
    */
  virtual void setColNames(OsiNameVec &srcNames,
    int srcStart, int len, int tgtStart);

  /*! \brief Delete len column names starting at index tgtStart

      The specified column names are removed and the remaining column names
      are copied down to close the gap.
    */
  virtual void deleteColNames(int tgtStart, int len);

  /*! \brief Set row and column names from a CoinMpsIO object.
    
      Also sets the name of the objective function. If the name discipline
      is auto, you get what you asked for. This routine does not use
      setRowName or setColName.
    */
  void setRowColNames(const CoinMpsIO &mps);

  /*! \brief Set row and column names from a CoinModel object.

      If the name discipline is auto, you get what you asked for.
      This routine does not use setRowName or setColName.
    */
  void setRowColNames(CoinModel &mod);

  /*! \brief Set row and column names from a CoinLpIO object.

      Also sets the name of the objective function. If the name discipline is
      auto, you get what you asked for. This routine does not use setRowName
      or setColName.
    */
  void setRowColNames(CoinLpIO &mod);

  //@}
  //-------------------------------------------------------------------------

  //-------------------------------------------------------------------------
  /**@name Methods to modify the constraint system.

     Note that new columns are added as continuous variables.
  */
  //@{

  /** Add a column (primal variable) to the problem. */
  virtual void addCol(const CoinPackedVectorBase &vec,
    const double collb, const double colub,
    const double obj)
    = 0;

  /*! \brief Add a named column (primal variable) to the problem.

      The default implementation adds the column, then changes the name. This
      can surely be made more efficient within an OsiXXX class.
    */
  virtual void addCol(const CoinPackedVectorBase &vec,
    const double collb, const double colub,
    const double obj, std::string name);

  /** Add a column (primal variable) to the problem. */
  virtual void addCol(int numberElements,
    const int *rows, const double *elements,
    const double collb, const double colub,
    const double obj);

  /*! \brief Add a named column (primal variable) to the problem.

      The default implementation adds the column, then changes the name. This
      can surely be made more efficient within an OsiXXX class.
    */
  virtual void addCol(int numberElements,
    const int *rows, const double *elements,
    const double collb, const double colub,
    const double obj, std::string name);

  /** Add a set of columns (primal variables) to the problem.
    
      The default implementation simply makes repeated calls to
      addCol().
    */
  virtual void addCols(const int numcols,
    const CoinPackedVectorBase *const *cols,
    const double *collb, const double *colub,
    const double *obj);

  /** Add a set of columns (primal variables) to the problem.
    
      The default implementation simply makes repeated calls to
      addCol().
    */
  virtual void addCols(const int numcols, const CoinBigIndex *columnStarts,
    const int *rows, const double *elements,
    const double *collb, const double *colub,
    const double *obj);

  /// Add columns using a CoinBuild object
  void addCols(const CoinBuild &buildObject);

  /** Add columns from a model object.  returns
       -1 if object in bad state (i.e. has row information)
       otherwise number of errors
       modelObject non const as can be regularized as part of build
    */
  int addCols(CoinModel &modelObject);

#if 0
    /** */
    virtual void addCols(const CoinPackedMatrix& matrix,
			 const double* collb, const double* colub,   
			 const double* obj);
#endif

  /** \brief Remove a set of columns (primal variables) from the
	       problem.

      The solver interface for a basis-oriented solver will maintain valid
      warm start information if all deleted variables are nonbasic.
    */
  virtual void deleteCols(const int num, const int *colIndices) = 0;

  /*! \brief Add a row (constraint) to the problem. */
  virtual void addRow(const CoinPackedVectorBase &vec,
    const double rowlb, const double rowub)
    = 0;

  /*! \brief Add a named row (constraint) to the problem.
    
      The default implementation adds the row, then changes the name. This
      can surely be made more efficient within an OsiXXX class.
    */
  virtual void addRow(const CoinPackedVectorBase &vec,
    const double rowlb, const double rowub,
    std::string name);

  /*! \brief Add a row (constraint) to the problem. */
  virtual void addRow(const CoinPackedVectorBase &vec,
    const char rowsen, const double rowrhs,
    const double rowrng)
    = 0;

  /*! \brief Add a named row (constraint) to the problem.

      The default implementation adds the row, then changes the name. This
      can surely be made more efficient within an OsiXXX class.
    */
  virtual void addRow(const CoinPackedVectorBase &vec,
    const char rowsen, const double rowrhs,
    const double rowrng, std::string name);

  /*! Add a row (constraint) to the problem.
    
      Converts to addRow(CoinPackedVectorBase&,const double,const double).
    */
  virtual void addRow(int numberElements,
    const int *columns, const double *element,
    const double rowlb, const double rowub);

  /*! Add a set of rows (constraints) to the problem.
    
      The default implementation simply makes repeated calls to
      addRow().
    */
  virtual void addRows(const int numrows,
    const CoinPackedVectorBase *const *rows,
    const double *rowlb, const double *rowub);

  /** Add a set of rows (constraints) to the problem.
    
      The default implementation simply makes repeated calls to
      addRow().
    */
  virtual void addRows(const int numrows,
    const CoinPackedVectorBase *const *rows,
    const char *rowsen, const double *rowrhs,
    const double *rowrng);

  /** Add a set of rows (constraints) to the problem.
    
      The default implementation simply makes repeated calls to
      addRow().
    */
  virtual void addRows(const int numrows, const CoinBigIndex *rowStarts,
    const int *columns, const double *element,
    const double *rowlb, const double *rowub);

  /// Add rows using a CoinBuild object
  void addRows(const CoinBuild &buildObject);

  /*! Add rows from a CoinModel object.
    
      Returns -1 if the object is in the wrong state (<i>i.e.</i>, has
      column-major information), otherwise the number of errors.

      The modelObject is not const as it can be regularized as part of
      the build.
    */
  int addRows(CoinModel &modelObject);

#if 0
    /** */
    virtual void addRows(const CoinPackedMatrix& matrix,
			 const double* rowlb, const double* rowub);
    /** */
    virtual void addRows(const CoinPackedMatrix& matrix,
			 const char* rowsen, const double* rowrhs,   
			 const double* rowrng);
#endif

  /** \brief Delete a set of rows (constraints) from the problem.

      The solver interface for a basis-oriented solver will maintain valid
      warm start information if all deleted rows are loose.
    */
  virtual void deleteRows(const int num, const int *rowIndices) = 0;

  /** \brief Replace the constraint matrix

      I (JJF) am getting annoyed because I can't just replace a matrix.
      The default behavior of this is do nothing so only use where that would
      not matter, e.g. strengthening a matrix for MIP.
    */
  virtual void replaceMatrixOptional(const CoinPackedMatrix &) {}

  /** \brief Replace the constraint matrix
    
      And if it does matter (not used at present)
    */
  virtual void replaceMatrix(const CoinPackedMatrix &) { abort(); }

  /** \brief Save a copy of the base model
    
      If solver wants it can save a copy of "base" (continuous) model here.
    */
  virtual void saveBaseModel() {}

  /** \brief Reduce the constraint system to the specified number of
    	       constraints.

       If solver wants it can restore a copy of "base" (continuous) model
       here.

       \note
       The name is somewhat misleading. Implementors should consider
       the opportunity to optimise behaviour in the common case where
       \p numberRows is exactly the number of original constraints. Do not,
       however, neglect the possibility that \p numberRows does not equal
       the number of original constraints.
     */
  virtual void restoreBaseModel(int numberRows);
  //-----------------------------------------------------------------------
  /** Apply a collection of cuts.

	Only cuts which have an <code>effectiveness >= effectivenessLb</code>
	are applied.
	<ul>
	  <li> ReturnCode.getNumineffective() -- number of cuts which were
	       not applied because they had an
	       <code>effectiveness < effectivenessLb</code>
	  <li> ReturnCode.getNuminconsistent() -- number of invalid cuts
	  <li> ReturnCode.getNuminconsistentWrtIntegerModel() -- number of
	       cuts that are invalid with respect to this integer model
	  <li> ReturnCode.getNuminfeasible() -- number of cuts that would
	       make this integer model infeasible
	  <li> ReturnCode.getNumApplied() -- number of integer cuts which
	       were applied to the integer model
	  <li> cs.size() == getNumineffective() +
			    getNuminconsistent() +
			    getNuminconsistentWrtIntegerModel() +
			    getNuminfeasible() +
			    getNumApplied()
	</ul>
    */
  virtual ApplyCutsReturnCode applyCuts(const OsiCuts &cs,
    double effectivenessLb = 0.0);

  /** Apply a collection of row cuts which are all effective.
	applyCuts seems to do one at a time which seems inefficient.
	Would be even more efficient to pass an array of pointers.
    */
  virtual void applyRowCuts(int numberCuts, const OsiRowCut *cuts);

  /** Apply a collection of row cuts which are all effective.
	This is passed in as an array of pointers.
    */
  virtual void applyRowCuts(int numberCuts, const OsiRowCut **cuts);

  /// Deletes branching information before columns deleted
  void deleteBranchingInfo(int numberDeleted, const int *which);

  //@}

  //---------------------------------------------------------------------------

  /**@name Methods for problem input and output */
  //@{
  /*! \brief Load in a problem by copying the arguments. The constraints on
	    the rows are given by lower and upper bounds.
	
	If a pointer is 0 then the following values are the default:
        <ul>
          <li> <code>colub</code>: all columns have upper bound infinity
          <li> <code>collb</code>: all columns have lower bound 0 
          <li> <code>rowub</code>: all rows have upper bound infinity
          <li> <code>rowlb</code>: all rows have lower bound -infinity
	  <li> <code>obj</code>: all variables have 0 objective coefficient
        </ul>

	Note that the default values for rowub and rowlb produce the
	constraint -infty <= ax <= infty. This is probably not what you want.
    */
  virtual void loadProblem(const CoinPackedMatrix &matrix,
    const double *collb, const double *colub,
    const double *obj,
    const double *rowlb, const double *rowub)
    = 0;

  /*! \brief Load in a problem by assuming ownership of the arguments.
	    The constraints on the rows are given by lower and upper bounds.

	For default argument values see the matching loadProblem method.

	\warning
	The arguments passed to this method will be freed using the
	C++ <code>delete</code> and <code>delete[]</code> functions. 
    */
  virtual void assignProblem(CoinPackedMatrix *&matrix,
    double *&collb, double *&colub, double *&obj,
    double *&rowlb, double *&rowub)
    = 0;

  /*! \brief Load in a problem by copying the arguments.
	    The constraints on the rows are given by sense/rhs/range triplets.
	    
	If a pointer is 0 then the following values are the default:
	<ul>
          <li> <code>colub</code>: all columns have upper bound infinity
          <li> <code>collb</code>: all columns have lower bound 0 
	  <li> <code>obj</code>: all variables have 0 objective coefficient
          <li> <code>rowsen</code>: all rows are >=
          <li> <code>rowrhs</code>: all right hand sides are 0
          <li> <code>rowrng</code>: 0 for the ranged rows
        </ul>

	Note that the default values for rowsen, rowrhs, and rowrng produce the
	constraint ax >= 0.
    */
  virtual void loadProblem(const CoinPackedMatrix &matrix,
    const double *collb, const double *colub,
    const double *obj,
    const char *rowsen, const double *rowrhs,
    const double *rowrng)
    = 0;

  /*! \brief Load in a problem by assuming ownership of the arguments.
	    The constraints on the rows are given by sense/rhs/range triplets.
	
	For default argument values see the matching loadProblem method.

	\warning
	The arguments passed to this method will be freed using the
	C++ <code>delete</code> and <code>delete[]</code> functions. 
    */
  virtual void assignProblem(CoinPackedMatrix *&matrix,
    double *&collb, double *&colub, double *&obj,
    char *&rowsen, double *&rowrhs,
    double *&rowrng)
    = 0;

  /*! \brief Load in a problem by copying the arguments. The constraint
	    matrix is is specified with standard column-major
	    column starts / row indices / coefficients vectors. 
	    The constraints on the rows are given by lower and upper bounds.
    
      The matrix vectors must be gap-free. Note that <code>start</code> must
      have <code>numcols+1</code> entries so that the length of the last column
      can be calculated as <code>start[numcols]-start[numcols-1]</code>.

      See the previous loadProblem method using rowlb and rowub for default
      argument values.
    */
  virtual void loadProblem(const int numcols, const int numrows,
    const CoinBigIndex *start, const int *index,
    const double *value,
    const double *collb, const double *colub,
    const double *obj,
    const double *rowlb, const double *rowub)
    = 0;

  /*! \brief Load in a problem by copying the arguments. The constraint
	    matrix is is specified with standard column-major
	    column starts / row indices / coefficients vectors. 
	    The constraints on the rows are given by sense/rhs/range triplets.
    
      The matrix vectors must be gap-free. Note that <code>start</code> must
      have <code>numcols+1</code> entries so that the length of the last column
      can be calculated as <code>start[numcols]-start[numcols-1]</code>.

      See the previous loadProblem method using sense/rhs/range for default
      argument values.
    */
  virtual void loadProblem(const int numcols, const int numrows,
    const CoinBigIndex *start, const int *index,
    const double *value,
    const double *collb, const double *colub,
    const double *obj,
    const char *rowsen, const double *rowrhs,
    const double *rowrng)
    = 0;

  /*! \brief Load a model from a CoinModel object. Return the number of
	    errors encountered.

      The modelObject parameter cannot be const as it may be changed as part
      of process. If keepSolution is true will try and keep warmStart.
    */
  virtual int loadFromCoinModel(CoinModel &modelObject,
    bool keepSolution = false);

  /*! \brief Read a problem in MPS format from the given filename.
    
      The default implementation uses CoinMpsIO::readMps() to read
      the MPS file and returns the number of errors encountered.
    */
  virtual int readMps(const char *filename,
    const char *extension = "mps");

  /*! \brief Read a problem in MPS format from the given full filename.
    
      This uses CoinMpsIO::readMps() to read the MPS file and returns the
      number of errors encountered. It also may return an array of set
      information
    */
  virtual int readMps(const char *filename, const char *extension,
    int &numberSets, CoinSet **&sets);

  /*! \brief Read a problem in GMPL format from the given filenames.
    
      The default implementation uses CoinMpsIO::readGMPL(). This capability
      is available only if the third-party package Glpk is installed.
    */
  virtual int readGMPL(const char *filename, const char *dataname = NULL);

  /*! \brief Write the problem in MPS format to the specified file.

      If objSense is non-zero, a value of -1.0 causes the problem to be
      written with a maximization objective; +1.0 forces a minimization
      objective. If objSense is zero, the choice is left to the implementation.
    */
  virtual void writeMps(const char *filename,
    const char *extension = "mps",
    double objSense = 0.0) const = 0;

  /*! \brief Write the problem in MPS format to the specified file with
	    more control over the output.

	Row and column names may be null.
	formatType is
	<ul>
	  <li> 0 - normal
	  <li> 1 - extra accuracy 
	  <li> 2 - IEEE hex
	</ul>

	Returns non-zero on I/O error
    */
  int writeMpsNative(const char *filename,
    const char **rowNames, const char **columnNames,
    int formatType = 0, int numberAcross = 2,
    double objSense = 0.0, int numberSOS = 0,
    const CoinSet *setInfo = NULL) const;

  /***********************************************************************/
  // Lp files

  /** Write the problem into an Lp file of the given filename with the 
      specified extension.
      Coefficients with value less than epsilon away from an integer value
      are written as integers.
      Write at most numberAcross monomials on a line.
      Write non integer numbers with decimals digits after the decimal point.

      The written problem is always a minimization problem.
      If the current problem is a maximization problem, the 
      intended objective function for the written problem is the current
      objective function multiplied by -1. If the current problem is a
      minimization problem, the intended objective function for the
      written problem is the current objective function.
      If objSense < 0, the intended objective function is multiplied by -1
      before writing the problem. It is left unchanged otherwise.

      Write objective function name and constraint names if useRowNames is 
      true. This version calls writeLpNative().
  */
  virtual void writeLp(const char *filename,
    const char *extension = "lp",
    double epsilon = 1e-5,
    int numberAcross = 10,
    int decimals = 9,
    double objSense = 0.0,
    bool useRowNames = true) const;

  /** Write the problem into the file pointed to by the parameter fp. 
      Other parameters are similar to 
      those of writeLp() with first parameter filename.
  */
  virtual void writeLp(FILE *fp,
    double epsilon = 1e-5,
    int numberAcross = 10,
    int decimals = 5,
    double objSense = 0.0,
    bool useRowNames = true) const;

  /** Write the problem into an Lp file. Parameters are similar to 
      those of writeLp(), but in addition row names and column names
      may be given. 

      Parameter rowNames may be NULL, in which case default row names 
      are used. If rowNames is not NULL, it must have exactly one entry
      per row in the problem and one additional
      entry (rowNames[getNumRows()] with the objective function name.
      These getNumRows()+1 entries must be distinct. If this is not the 
      case, default row names
      are used. In addition, format restrictions are imposed on names
      (see CoinLpIO::is_invalid_name() for details).

      Similar remarks can be made for the parameter columnNames which
      must either be NULL or have exactly getNumCols() distinct entries.

      Write objective function name and constraint names if 
      useRowNames is true. */
  int writeLpNative(const char *filename,
    char const *const *const rowNames,
    char const *const *const columnNames,
    const double epsilon = 1.0e-5,
    const int numberAcross = 10,
    const int decimals = 5,
    const double objSense = 0.0,
    const bool useRowNames = true) const;

  /** Write the problem into the file pointed to by the parameter fp. 
      Other parameters are similar to 
      those of writeLpNative() with first parameter filename.
  */
  int writeLpNative(FILE *fp,
    char const *const *const rowNames,
    char const *const *const columnNames,
    const double epsilon = 1.0e-5,
    const int numberAcross = 10,
    const int decimals = 5,
    const double objSense = 0.0,
    const bool useRowNames = true) const;

  /// Read file in LP format from file with name filename.
  /// See class CoinLpIO for description of this format.
  virtual int readLp(const char *filename, const double epsilon = 1e-5);

  /// Read file in LP format from the file pointed to by fp.
  /// See class CoinLpIO for description of this format.
  int readLp(FILE *fp, const double epsilon = 1e-5);

  //@}

  //---------------------------------------------------------------------------

  /**@name Miscellaneous */
  //@{
  /** Check two models against each other.  Return nonzero if different.
      Ignore names if that set.
      (Note initial version does not check names)
      May modify both models by cleaning up
  */
  int differentModel(OsiSolverInterface &other,
    bool ignoreNames = true);
  /** Get some statistics about model - min/max always computed
      type 0->4 , larger gives more information
      0 - Just set min and max values of coefficients
  */
  void statistics(double &minimumNegative, double &maximumNegative,
    double &minimumPositive, double &maximumPositive,
    int type = 3) const;
#ifdef COIN_SNAPSHOT
  /// Return a CoinSnapshot
  virtual CoinSnapshot *snapshot(bool createArrays = true) const;
#endif
#ifdef COIN_FACTORIZATION_INFO
  /// Return number of entries in L part of current factorization
  virtual CoinBigIndex getSizeL() const;
  /// Return number of entries in U part of current factorization
  virtual CoinBigIndex getSizeU() const;
#endif
  //@}

  //---------------------------------------------------------------------------

  /**@name Setting/Accessing application data */
  //@{
  /** Set application data.

	This is a pointer that the application can store into and
	retrieve from the solver interface.
	This field is available for the application to optionally
	define and use.
    */
  void setApplicationData(void *appData);
  /** Create a clone of an Auxiliary Information object.
        The base class just stores an application data pointer
        but can be more general.  Application data pointer is
        designed for one user while this can be extended to cope
        with more general extensions.
    */
  void setAuxiliaryInfo(OsiAuxInfo *auxiliaryInfo);

  /// Get application data
  void *getApplicationData() const;
  /// Get pointer to auxiliary info object
  OsiAuxInfo *getAuxiliaryInfo() const;
  //@}
  //---------------------------------------------------------------------------

  /**@name Message handling
  
    See the COIN library documentation for additional information about
    COIN message facilities.
  
  */
  //@{
  /** Pass in a message handler
  
    It is the client's responsibility to destroy a message handler installed
    by this routine; it will not be destroyed when the solver interface is
    destroyed. 
  */
  virtual void passInMessageHandler(CoinMessageHandler *handler);
  /// Set language
  void newLanguage(CoinMessages::Language language);
  inline void setLanguage(CoinMessages::Language language)
  {
    newLanguage(language);
  }
  /// Return a pointer to the current message handler
  inline CoinMessageHandler *messageHandler() const
  {
    return handler_;
  }
  /// Return the current set of messages
  inline CoinMessages messages()
  {
    return messages_;
  }
  /// Return a pointer to the current set of messages
  inline CoinMessages *messagesPointer()
  {
    return &messages_;
  }
  /// Return true if default handler
  inline bool defaultHandler() const
  {
    return defaultHandler_;
  }
  //@}
  //---------------------------------------------------------------------------
  /**@name Methods for dealing with discontinuities other than integers.
  
     Osi should be able to know about SOS and other types.  This is an optional
     section where such information can be stored.

  */
  //@{
  /** \brief Identify integer variables and create corresponding objects.
  
      Record integer variables and create an OsiSimpleInteger object for each
      one.  All existing OsiSimpleInteger objects will be destroyed.
      If justCount then no objects created and we just store numberIntegers_
    */

  void findIntegers(bool justCount);
  /** \brief Identify integer variables and SOS and create corresponding objects.
  
      Record integer variables and create an OsiSimpleInteger object for each
      one.  All existing OsiSimpleInteger objects will be destroyed.
      If the solver supports SOS then do the same for SOS.

      If justCount then no objects created and we just store numberIntegers_
      Returns number of SOS
    */

  virtual int findIntegersAndSOS(bool justCount);
  /// Get the number of objects
  inline int numberObjects() const { return numberObjects_; }
  /// Set the number of objects
  inline void setNumberObjects(int number)
  {
    numberObjects_ = number;
  }

  /// Get the array of objects
  inline OsiObject **objects() const { return object_; }

  /// Get the specified object
  const inline OsiObject *object(int which) const { return object_[which]; }
  /// Get the specified object
  inline OsiObject *modifiableObject(int which) const { return object_[which]; }

  /// Delete all object information
  void deleteObjects();

  /** Add in object information.
  
      Objects are cloned; the owner can delete the originals.
    */
  void addObjects(int numberObjects, OsiObject **objects);
  /** Use current solution to set bounds so current integer feasible solution will stay feasible.
        Only feasible bounds will be used, even if current solution outside bounds.  The amount of
        such violation will be returned (and if small can be ignored)
    */
  double forceFeasible();
  //@}
  //---------------------------------------------------------------------------

  /*! @name Methods related to testing generated cuts
  
    See the documentation for OsiRowCutDebugger for additional details.
  */
  //@{
  /*! \brief Activate the row cut debugger.

      If \p modelName is in the set of known models then all cuts are
      checked to see that they do NOT cut off the optimal solution known
      to the debugger.
    */
  virtual void activateRowCutDebugger(const char *modelName);

  /*! \brief Activate the row cut debugger using a full solution array.


      Activate the debugger for a model not included in the debugger's
      internal database.  Cuts will be checked to see that they do NOT
      cut off the given solution.

      \p solution must be a full solution vector, but only the integer
      variables need to be correct. The debugger will fill in the continuous
      variables by solving an lp relaxation with the integer variables
      fixed as specified. If the given values for the continuous variables
      should be preserved, set \p keepContinuous to true.
    */
  virtual void activateRowCutDebugger(const double *solution,
    bool enforceOptimality = true);

  /*! \brief Get the row cut debugger provided the solution known to the
    	       debugger is within the feasible region held in the solver.

      If there is a row cut debugger object associated with model AND if
      the solution known to the debugger is within the solver's current
      feasible region (i.e., the column bounds held in the solver are
      compatible with the known solution) then a pointer to the debugger
      is returned which may be used to test validity of cuts.

      Otherwise NULL is returned
    */
  const OsiRowCutDebugger *getRowCutDebugger() const;

  /*! \brief Get the row cut debugger object

      Return the row cut debugger object if it exists. One common usage of
      this method is to obtain a debugger object in order to execute
      OsiRowCutDebugger::redoSolution (so that the stored solution is again
      compatible with the problem held in the solver).
    */
  OsiRowCutDebugger *getRowCutDebuggerAlways() const;
  //@}

  /*! \name OsiSimplexInterface
      \brief Simplex Interface

    Methods for an advanced interface to a simplex solver. The interface
    comprises two groups of methods. Group 1 contains methods for tableau
    access. Group 2 contains methods for dictating individual simplex pivots.
  */
  //@{

  /*! \brief Return the simplex implementation level.
  
      The return codes are:
      - 0: the simplex interface is not implemented.
      - 1: the Group 1 (tableau access) methods are implemented.
      - 2: the Group 2 (pivoting) methods are implemented

      The codes are cumulative - a solver which implements Group 2 also
      implements Group 1.
  */
  virtual int canDoSimplexInterface() const;
  //@}

  /*! \name OsiSimplex Group 1
      \brief Tableau access methods.

      This group of methods provides access to rows and columns of the basis
      inverse and to rows and columns of the tableau.
  */
  //@{

  /*! \brief Prepare the solver for the use of tableau access methods.
  
    Prepares the solver for the use of the tableau access methods, if
    any such preparation is required.

    The \c const attribute is required due to the places this method
    may be called (e.g., within CglCutGenerator::generateCuts()).
  */
  virtual void enableFactorization() const;

  /*! \brief Undo the effects of #enableFactorization. */
  virtual void disableFactorization() const;

  /*! \brief Check if an optimal basis is available.
  
    Returns true if the problem has been solved to optimality and a
    basis is available. This should be used to see if the tableau access
    operations are possible and meaningful.
    
    \note
    Implementors please note that this method may be called
    before #enableFactorization.
  */
  virtual bool basisIsAvailable() const;

  /// Synonym for #basisIsAvailable
  inline bool optimalBasisIsAvailable() const { return basisIsAvailable(); }

  /*! \brief Retrieve status information for column and row variables.
 
    This method returns status as integer codes:
    <ul>
      <li> 0: free
      <li> 1: basic
      <li> 2: nonbasic at upper bound
      <li> 3: nonbasic at lower bound
    </ul>

    The #getWarmStart method provides essentially the same functionality
    for a simplex-oriented solver, but the implementation details are very
    different.

    \note
    Logical variables associated with rows are all assumed to have +1
    coefficients, so for a <= constraint the logical will be at lower
    bound if the constraint is tight.

    \note
    Implementors may choose to implement this method as a wrapper which
    converts a CoinWarmStartBasis to the requested representation.
  */
  virtual void getBasisStatus(int *cstat, int *rstat) const;

  /*! \brief Set the status of column and row variables and update
             the basis factorization and solution.

    Status information should be coded as documented for #getBasisStatus.
    Returns 0 if all goes well, 1 if something goes wrong.

    This method differs from #setWarmStart in the format of the input
    and in its immediate effect. Think of it as #setWarmStart immediately
    followed by #resolve, but no pivots are allowed.

    \note
    Implementors may choose to implement this method as a wrapper that calls
    #setWarmStart and #resolve if the no pivot requirement can be satisfied.
  */
  virtual int setBasisStatus(const int *cstat, const int *rstat);

  /*! \brief Calculate duals and reduced costs for the given objective
	     coefficients.

    The solver's objective coefficient vector is not changed.
  */
  virtual void getReducedGradient(double *columnReducedCosts,
    double *duals, const double *c) const;

  /*! \brief Get a row of the tableau
  
    If \p slack is not null, it will be loaded with the coefficients for
    the artificial (logical) variables (i.e., the row of the basis inverse).
  */
  virtual void getBInvARow(int row, double *z, double *slack = NULL) const;

  /*! \brief Get a row of the basis inverse */
  virtual void getBInvRow(int row, double *z) const;

  /*! \brief Get a column of the tableau */
  virtual void getBInvACol(int col, double *vec) const;

  /*! \brief Get a column of the basis inverse */
  virtual void getBInvCol(int col, double *vec) const;

  /*! \brief Get indices of basic variables
  
    If the logical (artificial) for row i is basic, the index should be coded
    as (#getNumCols + i).
    The order of indices must match the order of elements in the vectors
    returned by #getBInvACol and #getBInvCol.
  */
  virtual void getBasics(int *index) const;

  //@}

  /*! \name OsiSimplex Group 2
      \brief Pivoting methods

      This group of methods provides for control of individual pivots by a
      simplex solver.
  */
  //@{

  /**Enables normal operation of subsequent functions.
     This method is supposed to ensure that all typical things (like
     reduced costs, etc.) are updated when individual pivots are executed
     and can be queried by other methods.  says whether will be
     doing primal or dual
  */
  virtual void enableSimplexInterface(bool doingPrimal);

  ///Undo whatever setting changes the above method had to make
  virtual void disableSimplexInterface();
  /** Perform a pivot by substituting a colIn for colOut in the basis. 
     The status of the leaving variable is given in outStatus. Where
     1 is to upper bound, -1 to lower bound
     Return code was undefined - now for OsiClp is 0 for okay,
     1 if inaccuracy forced re-factorization (should be okay) and
     -1 for singular factorization
  */
  virtual int pivot(int colIn, int colOut, int outStatus);

  /** Obtain a result of the primal pivot 
      Outputs: colOut -- leaving column, outStatus -- its status,
      t -- step size, and, if dx!=NULL, *dx -- primal ray direction.
      Inputs: colIn -- entering column, sign -- direction of its change (+/-1).
      Both for colIn and colOut, artificial variables are index by
      the negative of the row index minus 1.
      Return code (for now): 0 -- leaving variable found, 
      -1 -- everything else?
      Clearly, more informative set of return values is required 
      Primal and dual solutions are updated
  */
  virtual int primalPivotResult(int colIn, int sign,
    int &colOut, int &outStatus,
    double &t, CoinPackedVector *dx);

  /** Obtain a result of the dual pivot (similar to the previous method)
      Differences: entering variable and a sign of its change are now
      the outputs, the leaving variable and its statuts -- the inputs
      If dx!=NULL, then *dx contains dual ray
      Return code: same
  */
  virtual int dualPivotResult(int &colIn, int &sign,
    int colOut, int outStatus,
    double &t, CoinPackedVector *dx);
  //@}

  //---------------------------------------------------------------------------

  ///@name Constructors and destructors
  //@{
  /// Default Constructor
  OsiSolverInterface();

  /** Clone

      The result of calling clone(false) is defined to be equivalent to
      calling the default constructor OsiSolverInterface().
    */
  virtual OsiSolverInterface *clone(bool copyData = true) const = 0;

  /// Copy constructor
  OsiSolverInterface(const OsiSolverInterface &);

  /// Assignment operator
  OsiSolverInterface &operator=(const OsiSolverInterface &rhs);

  /// Destructor
  virtual ~OsiSolverInterface();

  /** Reset the solver interface.

    A call to reset() returns the solver interface to the same state as
    it would have if it had just been constructed by calling the default
    constructor OsiSolverInterface().
    */
  virtual void reset();
  //@}

  //---------------------------------------------------------------------------

protected:
  ///@name Protected methods
  //@{
  /** Apply a row cut (append to the constraint matrix). */
  virtual void applyRowCut(const OsiRowCut &rc) = 0;

  /** Apply a column cut (adjust the bounds of one or more variables). */
  virtual void applyColCut(const OsiColCut &cc) = 0;

  /** A quick inlined function to convert from the lb/ub style of
	constraint definition to the sense/rhs/range style */
  inline void
  convertBoundToSense(const double lower, const double upper,
    char &sense, double &right, double &range) const;
  /** A quick inlined function to convert from the sense/rhs/range style
	of constraint definition to the lb/ub style */
  inline void
  convertSenseToBound(const char sense, const double right,
    const double range,
    double &lower, double &upper) const;
  /** A quick inlined function to force a value to be between a minimum and
	a maximum value */
  template < class T >
  inline T
  forceIntoRange(const T value, const T lower, const T upper) const
  {
    return value < lower ? lower : (value > upper ? upper : value);
  }
  /** Set OsiSolverInterface object state for default constructor

      This routine establishes the initial values of data fields in the
      OsiSolverInterface object when the object is created using the
      default constructor.
    */
  void setInitialData();
  //@}

  ///@name Protected member data
  //@{
  /*! \brief Pointer to row cut debugger object

      Mutable so that we can update the solution held in the debugger while
      maintaining const'ness for the Osi object.
    */
  mutable OsiRowCutDebugger *rowCutDebugger_;
  // Why not just make useful stuff protected?
  /// Message handler
  CoinMessageHandler *handler_;
  /** Flag to say if the currrent handler is the default handler.
      Indicates if the solver interface object is responsible
      for destruction of the handler (true) or if the client is
      responsible (false).
  */
  bool defaultHandler_;
  /// Messages
  CoinMessages messages_;
  /// Number of integers
  int numberIntegers_;
  /// Total number of objects
  int numberObjects_;

  /// Integer and ... information (integer info normally at beginning)
  OsiObject **object_;
  /** Column type
      0 - continuous
      1 - binary (may get fixed later)
      2 - general integer (may get fixed later)
      3 - if supported - semi-continuous
      4 - if supported - semi-continuous integer
  */
  mutable char *columnType_;

  //@}

  //---------------------------------------------------------------------------

private:
  ///@name Private member data
  //@{
  /// Pointer to user-defined data structure - and more if user wants
  OsiAuxInfo *appDataEtc_;
  /// Array of integer parameters
  int intParam_[OsiLastIntParam];
  /// Array of double parameters
  double dblParam_[OsiLastDblParam];
  /// Array of string parameters
  std::string strParam_[OsiLastStrParam];
  /// Array of hint parameters
  bool hintParam_[OsiLastHintParam];
  /// Array of hint strengths
  OsiHintStrength hintStrength_[OsiLastHintParam];
  /** Warm start information used for hot starts when the default
       hot start implementation is used. */
  CoinWarmStart *ws_;
  /// Column solution satisfying lower and upper column bounds
  std::vector< double > strictColSolution_;

  /// Row names
  OsiNameVec rowNames_;
  /// Column names
  OsiNameVec colNames_;
  /// Objective name
  std::string objName_;

  //@}
};

//#############################################################################
/** A quick inlined function to convert from the lb/ub style of constraint
    definition to the sense/rhs/range style */
inline void
OsiSolverInterface::convertBoundToSense(const double lower, const double upper,
  char &sense, double &right,
  double &range) const
{
  double inf = getInfinity();
  range = 0.0;
  if (lower > -inf) {
    if (upper < inf) {
      right = upper;
      if (upper == lower) {
        sense = 'E';
      } else {
        sense = 'R';
        range = upper - lower;
      }
    } else {
      sense = 'G';
      right = lower;
    }
  } else {
    if (upper < inf) {
      sense = 'L';
      right = upper;
    } else {
      sense = 'N';
      right = 0.0;
    }
  }
}

//-----------------------------------------------------------------------------
/** A quick inlined function to convert from the sense/rhs/range style of
    constraint definition to the lb/ub style */
inline void
OsiSolverInterface::convertSenseToBound(const char sense, const double right,
  const double range,
  double &lower, double &upper) const
{
  double inf = getInfinity();
  switch (sense) {
  case 'E':
    lower = upper = right;
    break;
  case 'L':
    lower = -inf;
    upper = right;
    break;
  case 'G':
    lower = right;
    upper = inf;
    break;
  case 'R':
    lower = right - range;
    upper = right;
    break;
  case 'N':
    lower = -inf;
    upper = inf;
    break;
  }
}

#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/