CoinSearchTree.hpp 14 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* $Id$ */
// Copyright (C) 2006, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef CoinSearchTree_H
#define CoinSearchTree_H

#include <vector>
#include <algorithm>
#include <cmath>
#include <string>

#include "CoinFinite.hpp"
#include "CoinHelperFunctions.hpp"

// #define DEBUG_PRINT

//#############################################################################

class BitVector128 {
  friend bool operator<(const BitVector128 &b0, const BitVector128 &b1);

private:
  unsigned int bits_[4];

public:
  BitVector128();
  BitVector128(unsigned int bits[4]);
  ~BitVector128() {}
  void set(unsigned int bits[4]);
  void setBit(int i);
  void clearBit(int i);
  std::string str() const;
};

bool operator<(const BitVector128 &b0, const BitVector128 &b1);

//#############################################################################

/** A class from which the real tree nodes should be derived from. Some of the
    data that undoubtedly exist in the real tree node is replicated here for
    fast access. This class is used in the various comparison functions. */
class CoinTreeNode {
protected:
  CoinTreeNode()
    : depth_(-1)
    , fractionality_(-1)
    , quality_(-COIN_DBL_MAX)
    , true_lower_bound_(-COIN_DBL_MAX)
    , preferred_()
  {
  }
  CoinTreeNode(int d,
    int f = -1,
    double q = -COIN_DBL_MAX,
    double tlb = -COIN_DBL_MAX,
    BitVector128 p = BitVector128())
    : depth_(d)
    , fractionality_(f)
    , quality_(q)
    , true_lower_bound_(tlb)
    , preferred_(p)
  {
  }
  CoinTreeNode(const CoinTreeNode &x)
    : depth_(x.depth_)
    , fractionality_(x.fractionality_)
    , quality_(x.quality_)
    , true_lower_bound_(x.true_lower_bound_)
    , preferred_(x.preferred_)
  {
  }
  CoinTreeNode &operator=(const CoinTreeNode &x)
  {
    if (this != &x) {
      depth_ = x.depth_;
      fractionality_ = x.fractionality_;
      quality_ = x.quality_;
      true_lower_bound_ = x.true_lower_bound_;
      preferred_ = x.preferred_;
    }
    return *this;
  }

private:
  /// The depth of the node in the tree
  int depth_;
  /** A measure of fractionality, e.g., the number of unsatisfied
	integrality requirements */
  int fractionality_;
  /** Some quality for the node. For normal branch-and-cut problems the LP
	relaxation value will do just fine. It is probably an OK approximation
	even if column generation is done. */
  double quality_;
  /** A true lower bound on the node. May be -infinity. For normal
	branch-and-cut problems the LP relaxation value is OK. It is different
	when column generation is done. */
  double true_lower_bound_;
  /** */
  BitVector128 preferred_;

public:
  virtual ~CoinTreeNode() {}

  inline int getDepth() const { return depth_; }
  inline int getFractionality() const { return fractionality_; }
  inline double getQuality() const { return quality_; }
  inline double getTrueLB() const { return true_lower_bound_; }
  inline BitVector128 getPreferred() const { return preferred_; }

  inline void setDepth(int d) { depth_ = d; }
  inline void setFractionality(int f) { fractionality_ = f; }
  inline void setQuality(double q) { quality_ = q; }
  inline void setTrueLB(double tlb) { true_lower_bound_ = tlb; }
  inline void setPreferred(BitVector128 p) { preferred_ = p; }
};

//==============================================================================

class CoinTreeSiblings {
private:
  CoinTreeSiblings();
  CoinTreeSiblings &operator=(const CoinTreeSiblings &);

private:
  int current_;
  int numSiblings_;
  CoinTreeNode **siblings_;

public:
  CoinTreeSiblings(const int n, CoinTreeNode **nodes)
    : current_(0)
    , numSiblings_(n)
    , siblings_(new CoinTreeNode *[n])
  {
    CoinDisjointCopyN(nodes, n, siblings_);
  }
  CoinTreeSiblings(const CoinTreeSiblings &s)
    : current_(s.current_)
    , numSiblings_(s.numSiblings_)
    , siblings_(new CoinTreeNode *[s.numSiblings_])
  {
    CoinDisjointCopyN(s.siblings_, s.numSiblings_, siblings_);
  }
  ~CoinTreeSiblings() { delete[] siblings_; }
  inline CoinTreeNode *currentNode() const { return siblings_[current_]; }
  /** returns false if cannot be advanced */
  inline bool advanceNode() { return ++current_ != numSiblings_; }
  inline int toProcess() const { return numSiblings_ - current_; }
  inline int size() const { return numSiblings_; }
  inline void printPref() const
  {
    for (int i = 0; i < numSiblings_; ++i) {
      std::string pref = siblings_[i]->getPreferred().str();
      printf("prefs of sibligs: sibling[%i]: %s\n", i, pref.c_str());
    }
  }
};

//#############################################################################

/** Function objects to compare search tree nodes. The comparison function
    must return true if the first argument is "better" than the second one,
    i.e., it should be processed first. */
/*@{*/
/** Depth First Search. */
struct CoinSearchTreeComparePreferred {
  static inline const char *name() { return "CoinSearchTreeComparePreferred"; }
  inline bool operator()(const CoinTreeSiblings *x,
    const CoinTreeSiblings *y) const
  {
    const CoinTreeNode *xNode = x->currentNode();
    const CoinTreeNode *yNode = y->currentNode();
    const BitVector128 xPref = xNode->getPreferred();
    const BitVector128 yPref = yNode->getPreferred();
    bool retval = true;
    if (xPref < yPref) {
      retval = true;
    } else if (yPref < xPref) {
      retval = false;
    } else {
      retval = xNode->getQuality() < yNode->getQuality();
    }
#ifdef DEBUG_PRINT
    printf("Comparing xpref (%s) and ypref (%s) : %s\n",
      xpref.str().c_str(), ypref.str().c_str(), retval ? "T" : "F");
#endif
    return retval;
  }
};

//-----------------------------------------------------------------------------
/** Depth First Search. */
struct CoinSearchTreeCompareDepth {
  static inline const char *name() { return "CoinSearchTreeCompareDepth"; }
  inline bool operator()(const CoinTreeSiblings *x,
    const CoinTreeSiblings *y) const
  {
#if 1
    return x->currentNode()->getDepth() >= y->currentNode()->getDepth();
#else
    if (x->currentNode()->getDepth() > y->currentNode()->getDepth())
      return 1;
    if (x->currentNode()->getDepth() == y->currentNode()->getDepth() && x->currentNode()->getQuality() <= y->currentNode()->getQuality())
      return 1;
    return 0;
#endif
  }
};

//-----------------------------------------------------------------------------
/* Breadth First Search */
struct CoinSearchTreeCompareBreadth {
  static inline const char *name() { return "CoinSearchTreeCompareBreadth"; }
  inline bool operator()(const CoinTreeSiblings *x,
    const CoinTreeSiblings *y) const
  {
    return x->currentNode()->getDepth() < y->currentNode()->getDepth();
  }
};

//-----------------------------------------------------------------------------
/** Best first search */
struct CoinSearchTreeCompareBest {
  static inline const char *name() { return "CoinSearchTreeCompareBest"; }
  inline bool operator()(const CoinTreeSiblings *x,
    const CoinTreeSiblings *y) const
  {
    return x->currentNode()->getQuality() < y->currentNode()->getQuality();
  }
};

//#############################################################################

class CoinSearchTreeBase {
private:
  CoinSearchTreeBase(const CoinSearchTreeBase &);
  CoinSearchTreeBase &operator=(const CoinSearchTreeBase &);

protected:
  std::vector< CoinTreeSiblings * > candidateList_;
  int numInserted_;
  int size_;

protected:
  CoinSearchTreeBase()
    : candidateList_()
    , numInserted_(0)
    , size_(0)
  {
  }

  virtual void realpop() = 0;
  virtual void realpush(CoinTreeSiblings *s) = 0;
  virtual void fixTop() = 0;

public:
  virtual ~CoinSearchTreeBase() {}
  virtual const char *compName() const = 0;

  inline const std::vector< CoinTreeSiblings * > &getCandidates() const
  {
    return candidateList_;
  }
  inline bool empty() const { return candidateList_.empty(); }
  inline int size() const { return size_; }
  inline int numInserted() const { return numInserted_; }
  inline CoinTreeNode *top() const
  {
    if (size_ == 0 || candidateList_.size() == 0)
      return NULL;
#ifdef DEBUG_PRINT
    char output[44];
    output[43] = 0;
    candidateList_.front()->currentNode()->getPreferred().print(output);
    printf("top's pref: %s\n", output);
#endif
    return candidateList_.front()->currentNode();
  }
  /** pop will advance the \c next pointer among the siblings on the top and
	then moves the top to its correct position. #realpop is the method
	that actually removes the element from the heap */
  inline void pop()
  {
    CoinTreeSiblings *s = candidateList_.front();
    if (!s->advanceNode()) {
      realpop();
      delete s;
    } else {
      fixTop();
    }
    --size_;
  }
  inline void push(int numNodes, CoinTreeNode **nodes,
    const bool incrInserted = true)
  {
    CoinTreeSiblings *s = new CoinTreeSiblings(numNodes, nodes);
    realpush(s);
    if (incrInserted) {
      numInserted_ += numNodes;
    }
    size_ += numNodes;
  }
  inline void push(const CoinTreeSiblings &sib,
    const bool incrInserted = true)
  {
    CoinTreeSiblings *s = new CoinTreeSiblings(sib);
#ifdef DEBUG_PRINT
    s->printPref();
#endif
    realpush(s);
    if (incrInserted) {
      numInserted_ += sib.toProcess();
    }
    size_ += sib.toProcess();
  }
};

//#############################################################################

// #define CAN_TRUST_STL_HEAP
#ifdef CAN_TRUST_STL_HEAP

template < class Comp >
class CoinSearchTree : public CoinSearchTreeBase {
private:
  Comp comp_;

protected:
  virtual void realpop()
  {
    candidateList_.pop_back();
  }
  virtual void fixTop()
  {
    CoinTreeSiblings *s = top();
    realpop();
    push(s, false);
  }
  virtual void realpush(CoinTreeSiblings *s)
  {
    nodes_.push_back(s);
    std::push_heap(candidateList_.begin(), candidateList_.end(), comp_);
  }

public:
  CoinSearchTree()
    : CoinSearchTreeBase()
    , comp_()
  {
  }
  CoinSearchTree(const CoinSearchTreeBase &t)
    : CoinSearchTreeBase()
    , comp_()
  {
    candidateList_ = t.getCandidates();
    std::make_heap(candidateList_.begin(), candidateList_.end(), comp_);
    numInserted_ = t.numInserted_;
    size_ = t.size_;
  }
  ~CoinSearchTree() {}
  const char *compName() const { return Comp::name(); }
};

#else

template < class Comp >
class CoinSearchTree : public CoinSearchTreeBase {
private:
  Comp comp_;

protected:
  virtual void realpop()
  {
    candidateList_[0] = candidateList_.back();
    candidateList_.pop_back();
    fixTop();
  }
  /** After changing data in the top node, fix the heap */
  virtual void fixTop()
  {
    const size_t size = candidateList_.size();
    if (size > 1) {
      CoinTreeSiblings **candidates = &candidateList_[0];
      CoinTreeSiblings *s = candidates[0];
      --candidates;
      size_t pos = 1;
      size_t ch;
      for (ch = 2; ch < size; pos = ch, ch *= 2) {
        if (comp_(candidates[ch + 1], candidates[ch]))
          ++ch;
        if (comp_(s, candidates[ch]))
          break;
        candidates[pos] = candidates[ch];
      }
      if (ch == size) {
        if (comp_(candidates[ch], s)) {
          candidates[pos] = candidates[ch];
          pos = ch;
        }
      }
      candidates[pos] = s;
    }
  }
  virtual void realpush(CoinTreeSiblings *s)
  {
    candidateList_.push_back(s);
    CoinTreeSiblings **candidates = &candidateList_[0];
    --candidates;
    size_t pos = candidateList_.size();
    size_t ch;
    for (ch = pos / 2; ch != 0; pos = ch, ch /= 2) {
      if (comp_(candidates[ch], s))
        break;
      candidates[pos] = candidates[ch];
    }
    candidates[pos] = s;
  }

public:
  CoinSearchTree()
    : CoinSearchTreeBase()
    , comp_()
  {
  }
  CoinSearchTree(const CoinSearchTreeBase &t)
    : CoinSearchTreeBase()
    , comp_()
  {
    candidateList_ = t.getCandidates();
    std::sort(candidateList_.begin(), candidateList_.end(), comp_);
    numInserted_ = t.numInserted();
    size_ = t.size();
  }
  virtual ~CoinSearchTree() {}
  const char *compName() const { return Comp::name(); }
};

#endif

//#############################################################################

enum CoinNodeAction {
  CoinAddNodeToCandidates,
  CoinTestNodeForDiving,
  CoinDiveIntoNode
};

class CoinSearchTreeManager {
private:
  CoinSearchTreeManager(const CoinSearchTreeManager &);
  CoinSearchTreeManager &operator=(const CoinSearchTreeManager &);

private:
  CoinSearchTreeBase *candidates_;
  int numSolution;
  /** Whether there is an upper bound or not. The upper bound may have come
	as input, not necessarily from a solution */
  bool hasUB_;

  /** variable used to test whether we need to reevaluate search strategy */
  bool recentlyReevaluatedSearchStrategy_;

public:
  CoinSearchTreeManager()
    : candidates_(NULL)
    , numSolution(0)
    , recentlyReevaluatedSearchStrategy_(true)
  {
  }
  virtual ~CoinSearchTreeManager()
  {
    delete candidates_;
  }

  inline void setTree(CoinSearchTreeBase *t)
  {
    delete candidates_;
    candidates_ = t;
  }
  inline CoinSearchTreeBase *getTree() const
  {
    return candidates_;
  }

  inline bool empty() const { return candidates_->empty(); }
  inline size_t size() const { return candidates_->size(); }
  inline size_t numInserted() const { return candidates_->numInserted(); }
  inline CoinTreeNode *top() const { return candidates_->top(); }
  inline void pop() { candidates_->pop(); }
  inline void push(CoinTreeNode *node, const bool incrInserted = true)
  {
    candidates_->push(1, &node, incrInserted);
  }
  inline void push(const CoinTreeSiblings &s, const bool incrInserted = true)
  {
    candidates_->push(s, incrInserted);
  }
  inline void push(const int n, CoinTreeNode **nodes,
    const bool incrInserted = true)
  {
    candidates_->push(n, nodes, incrInserted);
  }

  inline CoinTreeNode *bestQualityCandidate() const
  {
    return candidates_->top();
  }
  inline double bestQuality() const
  {
    return candidates_->top()->getQuality();
  }
  void newSolution(double solValue);
  void reevaluateSearchStrategy();
};

//#############################################################################

#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/