CoinPresolveMatrix.hpp 61 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/* $Id$ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef CoinPresolveMatrix_H
#define CoinPresolveMatrix_H

#include "CoinPragma.hpp"
#include "CoinPackedMatrix.hpp"
#include "CoinMessage.hpp"
#include "CoinTime.hpp"

#include <cmath>
#include <cassert>
#include <cfloat>
#include <cassert>
#include <cstdlib>

//# define COIN_PRESOLVE_TUNING 2
#if PRESOLVE_DEBUG > 0
#include "CoinFinite.hpp"
#endif

/*! \file

  Declarations for CoinPresolveMatrix and CoinPostsolveMatrix and their
  common base class CoinPrePostsolveMatrix. Also declarations for
  CoinPresolveAction and a number of non-member utility functions.
*/

#if defined(_MSC_VER)
// Avoid MS Compiler problem in recognizing type to delete
// by casting to type.
// Is this still necessary? -- lh, 111202 --
#define deleteAction(array, type) delete[]((type)array)
#else
#define deleteAction(array, type) delete[] array
#endif

/*
  Define PRESOLVE_DEBUG and PRESOLVE_CONSISTENCY on the configure command
  line or in a Makefile!  See comments in CoinPresolvePsdebug.hpp.
*/
#if PRESOLVE_DEBUG > 0 || PRESOLVE_CONSISTENCY > 0

#define PRESOLVE_STMT(s) s

#define PRESOLVEASSERT(x) \
  ((x) ? 1 : ((std::cerr << "FAILED ASSERTION at line " << __LINE__ << ": " #x "\n"), abort(), 0))

inline void DIE(const char *s)
{
  std::cout << s;
  abort();
}

/*! \brief Indicate column or row present at start of postsolve

  This code is used during postsolve in [cr]done to indicate columns and rows
  that are present in the presolved system (i.e., present at the start of
  postsolve processing).

  \todo
  There are a bunch of these code definitions, scattered through presolve
  files. They should be collected in one place.
*/
#define PRESENT_IN_REDUCED '\377'

#else

#define PRESOLVEASSERT(x) \
  {                       \
  }
#define PRESOLVE_STMT(s) \
  {                      \
  }

inline void DIE(const char *) {}

#endif

/*
  Unclear why these are separate from standard debug.
*/
#ifndef PRESOLVE_DETAIL
#define PRESOLVE_DETAIL_PRINT(s) \
  {                              \
  }
#else
#define PRESOLVE_DETAIL_PRINT(s) s
#endif

/*! \brief Zero tolerance

  OSL had a fixed zero tolerance; we still use that here.
*/
const double ZTOLDP = 1e-12;
/*! \brief Alternate zero tolerance

  Use a different one if we are doing doubletons, etc.
*/
const double ZTOLDP2 = 1e-10;

/// The usual finite infinity
#define PRESOLVE_INF COIN_DBL_MAX
/// And a small infinity
#define PRESOLVE_SMALL_INF 1.0e20
/// Check for infinity using finite infinity
#define PRESOLVEFINITE(n) (-PRESOLVE_INF < (n) && (n) < PRESOLVE_INF)

class CoinPostsolveMatrix;

/*! \class CoinPresolveAction
    \brief Abstract base class of all presolve routines.

  The details will make more sense after a quick overview of the grand plan:
  A presolve object is handed a problem object, which it is expected to
  modify in some useful way.  Assuming that it succeeds, the presolve object
  should create a postsolve object, <i>i.e.</i>, an object that contains
  instructions for backing out the presolve transform to recover the original
  problem. These postsolve objects are accumulated in a linked list, with each
  successive presolve action adding its postsolve action to the head of the
  list. The end result of all this is a presolved problem object, and a list
  of postsolve objects. The presolved problem object is then handed to a
  solver for optimization, and the problem object augmented with the
  results.  The list of postsolve objects is then traversed. Each of them
  (un)modifies the problem object, with the end result being the original
  problem, augmented with solution information.

  The problem object representation is CoinPrePostsolveMatrix and subclasses.
  Check there for details. The \c CoinPresolveAction class and subclasses
  represent the presolve and postsolve objects.

  In spite of the name, the only information held in a \c CoinPresolveAction
  object is the information needed to postsolve (<i>i.e.</i>, the information
  needed to back out the presolve transformation). This information is not
  expected to change, so the fields are all \c const.

  A subclass of \c CoinPresolveAction, implementing a specific pre/postsolve
  action, is expected to declare a static function that attempts to perform a
  presolve transformation. This function will be handed a CoinPresolveMatrix
  to transform, and a pointer to the head of the list of postsolve objects.
  If the transform is successful, the function will create a new
  \c CoinPresolveAction object, link it at the head of the list of postsolve
  objects, and return a pointer to the postsolve object it has just created.
  Otherwise, it should return 0. It is expected that these static functions
  will be the only things that can create new \c CoinPresolveAction objects;
  this is expressed by making each subclass' constructor(s) private.

  Every subclass must also define a \c postsolve method.
  This function will be handed a CoinPostsolveMatrix to transform.

  It is the client's responsibility to implement presolve and postsolve driver
  routines. See OsiPresolve for examples.

  \note Since the only fields in a \c CoinPresolveAction are \c const, anything
	one can do with a variable declared \c CoinPresolveAction* can also be
	done with a variable declared \c const \c CoinPresolveAction* It is
	expected that all derived subclasses of \c CoinPresolveAction also have
	this property.
*/
class CoinPresolveAction {
public:
  /*! \brief Stub routine to throw exceptions.
  
   Exceptions are inefficient, particularly with g++.  Even with xlC, the
   use of exceptions adds a long prologue to a routine.  Therefore, rather
   than use throw directly in the routine, I use it in a stub routine.
  */
  static void throwCoinError(const char *error, const char *ps_routine)
  {
    throw CoinError(error, ps_routine, "CoinPresolve");
  }

  /*! \brief The next presolve transformation
  
    Set at object construction.
  */
  const CoinPresolveAction *next;

  /*! \brief Construct a postsolve object and add it to the transformation list.
  
    This is an `add to head' operation. This object will point to the
    one passed as the parameter.
  */
  CoinPresolveAction(const CoinPresolveAction *next)
    : next(next)
  {
  }
  /// modify next (when building rather than passing)
  inline void setNext(const CoinPresolveAction *nextAction)
  {
    next = nextAction;
  }

  /*! \brief A name for debug printing.

    It is expected that the name is not stored in the transform itself.
  */
  virtual const char *name() const = 0;

  /*! \brief Apply the postsolve transformation for this particular
	     presolve action.
  */
  virtual void postsolve(CoinPostsolveMatrix *prob) const = 0;

  /*! \brief Virtual destructor. */
  virtual ~CoinPresolveAction() {}
};

/*
  These are needed for OSI-aware constructors associated with
  CoinPrePostsolveMatrix, CoinPresolveMatrix, and CoinPostsolveMatrix.
*/
class ClpSimplex;
class OsiSolverInterface;

/*
  CoinWarmStartBasis is required for methods in CoinPrePostsolveMatrix
  that accept/return a CoinWarmStartBasis object.
*/
class CoinWarmStartBasis;

/*! \class CoinPrePostsolveMatrix
    \brief Collects all the information about the problem that is needed
	   in both presolve and postsolve.
    
    In a bit more detail, a column-major representation of the constraint
    matrix and upper and lower bounds on variables and constraints, plus row
    and column solutions, reduced costs, and status. There's also a set of
    arrays holding the original row and column numbers.

    As presolve and postsolve transform the matrix, it will occasionally be
    necessary to expand the number of entries in a column. There are two
    aspects:
    <ul>
      <li> During postsolve, the constraint system is expected to grow as
	   the smaller presolved system is transformed back to the original
	   system.
      <li> During both pre- and postsolve, transforms can increase the number
	   of coefficients in a row or column. (See the 
	   variable substitution, doubleton, and tripleton transforms.)
    </ul>

    The first is addressed by the members #ncols0_, #nrows0_, and #nelems0_.
    These should be set (via constructor parameters) to values large enough
    for the largest size taken on by the constraint system. Typically, this
    will be the size of the original constraint system.

    The second is addressed by a generous allocation of extra (empty) space
    for the arrays used to hold coefficients and row indices. When columns
    must be expanded, they are moved into the empty space. When it is used up,
    the arrays are compacted. When compaction fails to produce sufficient
    space, presolve/postsolve will fail.

    CoinPrePostsolveMatrix isn't really intended to be used `bare' --- the
    expectation is that it'll be used through CoinPresolveMatrix or
    CoinPostsolveMatrix. Some of the functions needed to load a problem are
    defined in the derived classes.

  When CoinPresolve is applied when reoptimising, we need to be prepared to
  accept a basis and modify it in step with the presolve actions (otherwise
  we throw away all the advantages of warm start for reoptimization). But
  other solution components (#acts_, #rowduals_, #sol_, and #rcosts_) are
  needed only for postsolve, where they're used in places to determine the
  proper action(s) when restoring rows or columns.  If presolve is provided
  with a solution, it will modify it in step with the presolve actions.
  Moving the solution components from CoinPrePostsolveMatrix to
  CoinPostsolveMatrix would break a lot of code.  It's not clear that it's
  worth it, and it would preclude upgrades to the presolve side that might
  make use of any of these.  -- lh, 080501 --

  The constructors that take an OSI or ClpSimplex as a parameter really should
  not be here, but for historical reasons they will likely remain for the
  forseeable future.  -- lh, 111202 --
*/

class CoinPrePostsolveMatrix {
public:
  /*! \name Constructors & Destructors */

  //@{
  /*! \brief `Native' constructor

    This constructor creates an empty object which must then be loaded. On
    the other hand, it doesn't assume that the client is an
    OsiSolverInterface.
  */
  CoinPrePostsolveMatrix(int ncols_alloc, int nrows_alloc,
    CoinBigIndex nelems_alloc);

  /*! \brief Generic OSI constructor

    See OSI code for the definition.
  */
  CoinPrePostsolveMatrix(const OsiSolverInterface *si,
    int ncols_,
    int nrows_,
    CoinBigIndex nelems_);

  /*! ClpOsi constructor

    See Clp code for the definition.
  */
  CoinPrePostsolveMatrix(const ClpSimplex *si,
    int ncols_,
    int nrows_,
    CoinBigIndex nelems_,
    double bulkRatio);

  /// Destructor
  ~CoinPrePostsolveMatrix();
  //@}

  /*! \brief Enum for status of various sorts
  
    Matches CoinWarmStartBasis::Status and adds superBasic. Most code that
    converts between CoinPrePostsolveMatrix::Status and
    CoinWarmStartBasis::Status will break if this correspondence is broken.

    superBasic is an unresolved problem: there's no analogue in
    CoinWarmStartBasis::Status.
  */
  enum Status {
    isFree = 0x00,
    basic = 0x01,
    atUpperBound = 0x02,
    atLowerBound = 0x03,
    superBasic = 0x04
  };

  /*! \name Functions to work with variable status

    Functions to work with the CoinPrePostsolveMatrix::Status enum and
    related vectors.

    \todo
    Why are we futzing around with three bit status? A holdover from the
    packed arrays of CoinWarmStartBasis? Big swaths of the presolve code
    manipulates colstat_ and rowstat_ as unsigned char arrays using simple
    assignment to set values.
  */
  //@{

  /// Set row status (<i>i.e.</i>, status of artificial for this row)
  inline void setRowStatus(int sequence, Status status)
  {
    unsigned char &st_byte = rowstat_[sequence];
    st_byte = static_cast< unsigned char >(st_byte & (~7));
    st_byte = static_cast< unsigned char >(st_byte | status);
  }
  /// Get row status
  inline Status getRowStatus(int sequence) const
  {
    return static_cast< Status >(rowstat_[sequence] & 7);
  }
  /// Check if artificial for this row is basic
  inline bool rowIsBasic(int sequence) const
  {
    return (static_cast< Status >(rowstat_[sequence] & 7) == basic);
  }
  /// Set column status (<i>i.e.</i>, status of primal variable)
  inline void setColumnStatus(int sequence, Status status)
  {
    unsigned char &st_byte = colstat_[sequence];
    st_byte = static_cast< unsigned char >(st_byte & (~7));
    st_byte = static_cast< unsigned char >(st_byte | status);

#ifdef PRESOLVE_DEBUG
    switch (status) {
    case isFree: {
      if (clo_[sequence] > -PRESOLVE_INF || cup_[sequence] < PRESOLVE_INF) {
        std::cout << "Bad status: Var " << sequence
                  << " isFree, lb = " << clo_[sequence]
                  << ", ub = " << cup_[sequence] << std::endl;
      }
      break;
    }
    case basic: {
      break;
    }
    case atUpperBound: {
      if (cup_[sequence] >= PRESOLVE_INF) {
        std::cout << "Bad status: Var " << sequence
                  << " atUpperBound, lb = " << clo_[sequence]
                  << ", ub = " << cup_[sequence] << std::endl;
      }
      break;
    }
    case atLowerBound: {
      if (clo_[sequence] <= -PRESOLVE_INF) {
        std::cout << "Bad status: Var " << sequence
                  << " atLowerBound, lb = " << clo_[sequence]
                  << ", ub = " << cup_[sequence] << std::endl;
      }
      break;
    }
    case superBasic: {
      if (clo_[sequence] <= -PRESOLVE_INF && cup_[sequence] >= PRESOLVE_INF) {
        std::cout << "Bad status: Var " << sequence
                  << " superBasic, lb = " << clo_[sequence]
                  << ", ub = " << cup_[sequence] << std::endl;
      }
      break;
    }
    default: {
      assert(false);
      break;
    }
    }
#endif
  }
  /// Get column (structural variable) status
  inline Status getColumnStatus(int sequence) const
  {
    return static_cast< Status >(colstat_[sequence] & 7);
  }
  /// Check if column (structural variable) is basic
  inline bool columnIsBasic(int sequence) const
  {
    return (static_cast< Status >(colstat_[sequence] & 7) == basic);
  }
  /*! \brief Set status of row (artificial variable) to the correct nonbasic
	     status given bounds and current value
  */
  void setRowStatusUsingValue(int iRow);
  /*! \brief Set status of column (structural variable) to the correct
	     nonbasic status given bounds and current value
  */
  void setColumnStatusUsingValue(int iColumn);
  /*! \brief Set column (structural variable) status vector */
  void setStructuralStatus(const char *strucStatus, int lenParam);
  /*! \brief Set row (artificial variable) status vector */
  void setArtificialStatus(const char *artifStatus, int lenParam);
  /*! \brief Set the status of all variables from a basis */
  void setStatus(const CoinWarmStartBasis *basis);
  /*! \brief Get status in the form of a CoinWarmStartBasis */
  CoinWarmStartBasis *getStatus();
  /*! \brief Return a print string for status of a column (structural
	     variable)
  */
  const char *columnStatusString(int j) const;
  /*! \brief Return a print string for status of a row (artificial
	     variable)
  */
  const char *rowStatusString(int i) const;
  //@}

  /*! \name Functions to load problem and solution information

    These functions can be used to load portions of the problem definition
    and solution. See also the CoinPresolveMatrix and CoinPostsolveMatrix
    classes.
  */
  //@{
  /// Set the objective function offset for the original system.
  void setObjOffset(double offset);
  /*! \brief Set the objective sense (max/min)

    Coded as 1.0 for min, -1.0 for max.
    Yes, there's a method, and a matching attribute. No, you really
    don't want to set this to maximise.
  */
  void setObjSense(double objSense);
  /// Set the primal feasibility tolerance
  void setPrimalTolerance(double primTol);
  /// Set the dual feasibility tolerance
  void setDualTolerance(double dualTol);
  /// Set column lower bounds
  void setColLower(const double *colLower, int lenParam);
  /// Set column upper bounds
  void setColUpper(const double *colUpper, int lenParam);
  /// Set column solution
  void setColSolution(const double *colSol, int lenParam);
  /// Set objective coefficients
  void setCost(const double *cost, int lenParam);
  /// Set reduced costs
  void setReducedCost(const double *redCost, int lenParam);
  /// Set row lower bounds
  void setRowLower(const double *rowLower, int lenParam);
  /// Set row upper bounds
  void setRowUpper(const double *rowUpper, int lenParam);
  /// Set row solution
  void setRowPrice(const double *rowSol, int lenParam);
  /// Set row activity
  void setRowActivity(const double *rowAct, int lenParam);
  //@}

  /*! \name Functions to retrieve problem and solution information */
  //@{
  /// Get current number of columns
  inline int getNumCols() const
  {
    return (ncols_);
  }
  /// Get current number of rows
  inline int getNumRows() const
  {
    return (nrows_);
  }
  /// Get current number of non-zero coefficients
  inline CoinBigIndex getNumElems() const
  {
    return (nelems_);
  }
  /// Get column start vector for column-major packed matrix
  inline const CoinBigIndex *getColStarts() const
  {
    return (mcstrt_);
  }
  /// Get column length vector for column-major packed matrix
  inline const int *getColLengths() const
  {
    return (hincol_);
  }
  /// Get vector of row indices for column-major packed matrix
  inline const int *getRowIndicesByCol() const
  {
    return (hrow_);
  }
  /// Get vector of elements for column-major packed matrix
  inline const double *getElementsByCol() const
  {
    return (colels_);
  }
  /// Get column lower bounds
  inline const double *getColLower() const
  {
    return (clo_);
  }
  /// Get column upper bounds
  inline const double *getColUpper() const
  {
    return (cup_);
  }
  /// Get objective coefficients
  inline const double *getCost() const
  {
    return (cost_);
  }
  /// Get row lower bounds
  inline const double *getRowLower() const
  {
    return (rlo_);
  }
  /// Get row upper bounds
  inline const double *getRowUpper() const
  {
    return (rup_);
  }
  /// Get column solution (primal variable values)
  inline const double *getColSolution() const
  {
    return (sol_);
  }
  /// Get row activity (constraint lhs values)
  inline const double *getRowActivity() const
  {
    return (acts_);
  }
  /// Get row solution (dual variables)
  inline const double *getRowPrice() const
  {
    return (rowduals_);
  }
  /// Get reduced costs
  inline const double *getReducedCost() const
  {
    return (rcosts_);
  }
  /// Count empty columns
  inline int countEmptyCols()
  {
    int empty = 0;
    for (int i = 0; i < ncols_; i++)
      if (hincol_[i] == 0)
        empty++;
    return (empty);
  }
  //@}

  /*! \name Message handling */
  //@{
  /// Return message handler
  inline CoinMessageHandler *messageHandler() const
  {
    return handler_;
  }
  /*! \brief Set message handler

    The client retains responsibility for the handler --- it will not be
    destroyed with the \c CoinPrePostsolveMatrix object.
  */
  inline void setMessageHandler(CoinMessageHandler *handler)
  {
    if (defaultHandler_ == true) {
      delete handler_;
      defaultHandler_ = false;
    }
    handler_ = handler;
  }
  /// Return messages
  inline CoinMessages messages() const
  {
    return messages_;
  }
  //@}

  /*! \name Current and Allocated Size

    During pre- and postsolve, the matrix will change in size. During presolve
    it will shrink; during postsolve it will grow. Hence there are two sets of
    size variables, one for the current size and one for the allocated size.
    (See the general comments for the CoinPrePostsolveMatrix class for more
    information.)
  */
  //@{

  /// current number of columns
  int ncols_;
  /// current number of rows
  int nrows_;
  /// current number of coefficients
  CoinBigIndex nelems_;

  /// Allocated number of columns
  int ncols0_;
  /// Allocated number of rows
  int nrows0_;
  /// Allocated number of coefficients
  CoinBigIndex nelems0_;
  /*! \brief Allocated size of bulk storage for row indices and coefficients

    This is the space allocated for hrow_ and colels_.  This must be large
    enough to allow columns to be copied into empty space when they need to
    be expanded.  For efficiency (to minimize the number of times the
    representation must be compressed) it's recommended that this be at least
    2*nelems0_.
  */
  CoinBigIndex bulk0_;
  /// Ratio of bulk0_ to nelems0_; default is 2.
  double bulkRatio_;
  //@}

  /*! \name Problem representation

    The matrix is the common column-major format: A pair of vectors with
    positional correspondence to hold coefficients and row indices, and a
    second pair of vectors giving the starting position and length of each
    column in the first pair.
  */
  //@{
  /// Vector of column start positions in #hrow_, #colels_
  CoinBigIndex *mcstrt_;
  /// Vector of column lengths
  int *hincol_;
  /// Row indices (positional correspondence with #colels_)
  int *hrow_;
  /// Coefficients (positional correspondence with #hrow_)
  double *colels_;

  /// Objective coefficients
  double *cost_;
  /// Original objective offset
  double originalOffset_;

  /// Column (primal variable) lower bounds
  double *clo_;
  /// Column (primal variable) upper bounds
  double *cup_;

  /// Row (constraint) lower bounds
  double *rlo_;
  /// Row (constraint) upper bounds
  double *rup_;

  /*! \brief Original column numbers

    Over the current range of column numbers in the presolved problem,
    the entry for column j will contain the index of the corresponding
    column in the original problem.
  */
  int *originalColumn_;
  /*! \brief Original row numbers

    Over the current range of row numbers in the presolved problem, the
    entry for row i will contain the index of the corresponding row in
    the original problem.
  */
  int *originalRow_;

  /// Primal feasibility tolerance
  double ztolzb_;
  /// Dual feasibility tolerance
  double ztoldj_;

  /*! \brief Maximization/minimization

    Yes, there's a variable here. No, you really don't want to set this to
    maximise. See the main notes for CoinPresolveMatrix.
  */
  double maxmin_;
  //@}

  /*! \name Problem solution information
   
    The presolve phase will work without any solution information
    (appropriate for initial optimisation) or with solution information
    (appropriate for reoptimisation).  When solution information is supplied,
    presolve will maintain it to the best of its ability.  #colstat_ is
    checked to determine the presence/absence of status information. #sol_ is
    checked for primal solution information, and #rowduals_ for dual solution
    information.

    The postsolve phase requires the complete solution information from the
    presolved problem (status, primal and dual solutions). It will be
    transformed into a correct solution for the original problem.
  */
  //@{
  /*! \brief Vector of primal variable values

    If #sol_ exists, it is assumed that primal solution information should be
    updated and that #acts_ also exists.
  */
  double *sol_;
  /*! \brief Vector of dual variable values

    If #rowduals_ exists, it is assumed that dual solution information should
    be updated and that #rcosts_ also exists.
  */
  double *rowduals_;
  /*! \brief Vector of constraint left-hand-side values (row activity)
  
    Produced by evaluating constraints according to #sol_. Updated iff
    #sol_ exists.
  */
  double *acts_;
  /*! \brief Vector of reduced costs
  
    Produced by evaluating dual constraints according to #rowduals_. Updated
    iff #rowduals_ exists.
  */
  double *rcosts_;

  /*! \brief Status of primal variables

    Coded with CoinPrePostSolveMatrix::Status, one code per char. colstat_ and
    #rowstat_ <b>MUST</b> be allocated as a single vector. This is to maintain
    compatibility with ClpPresolve and OsiPresolve, which do it this way.
  */
  unsigned char *colstat_;

  /*! \brief Status of constraints

    More accurately, the status of the logical variable associated with the
    constraint. Coded with CoinPrePostSolveMatrix::Status, one code per char.
    Note that this must be allocated as a single vector with #colstat_.
  */
  unsigned char *rowstat_;
  //@}

  /*! \name Message handling

    Uses the standard COIN approach: a default handler is installed, and the
    CoinPrePostsolveMatrix object takes responsibility for it. If the client
    replaces the handler with one of their own, it becomes their
    responsibility.
  */
  //@{
  /// Message handler
  CoinMessageHandler *handler_;
  /// Indicates if the current #handler_ is default (true) or not (false).
  bool defaultHandler_;
  /// Standard COIN messages
  CoinMessage messages_;
  //@}
};

/*! \relates CoinPrePostsolveMatrix
    \brief Generate a print string for a status code.
*/
const char *statusName(CoinPrePostsolveMatrix::Status status);

/*! \class presolvehlink
    \brief Links to aid in packed matrix modification

   Currently, the matrices held by the CoinPrePostsolveMatrix and
   CoinPresolveMatrix objects are represented in the same way as a
   CoinPackedMatrix. In the course of presolve and postsolve transforms, it
   will happen that a major-dimension vector needs to increase in size. In
   order to check whether there is enough room to add another coefficient in
   place, it helps to know the next vector (in memory order) in the bulk
   storage area. To do that, a linked list of major-dimension vectors is
   maintained; the "pre" and "suc" fields give the previous and next vector,
   in memory order (that is, the vector whose mcstrt_ or mrstrt_ entry is
   next smaller or larger).

   Consider a column-major matrix with ncols columns. By definition,
   presolvehlink[ncols].pre points to the column in the last occupied
   position of the bulk storage arrays. There is no easy way to find the
   column which occupies the first position (there is no presolvehlink[-1] to
   consult). If the column that initially occupies the first position is
   moved for expansion, there is no way to reclaim the space until the bulk
   storage is compacted.  The same holds for the last and first rows of a
   row-major matrix, of course.
*/

class presolvehlink {
public:
  int pre, suc;
};

#define NO_LINK -66666666

/*! \relates presolvehlink
    \brief unlink vector i

  Remove vector i from the ordering.
*/
inline void PRESOLVE_REMOVE_LINK(presolvehlink *link, int i)
{
  int ipre = link[i].pre;
  int isuc = link[i].suc;
  if (ipre >= 0) {
    link[ipre].suc = isuc;
  }
  if (isuc >= 0) {
    link[isuc].pre = ipre;
  }
  link[i].pre = NO_LINK, link[i].suc = NO_LINK;
}

/*! \relates presolvehlink
    \brief insert vector i after vector j

  Insert vector i between j and j.suc.
*/
inline void PRESOLVE_INSERT_LINK(presolvehlink *link, int i, int j)
{
  int isuc = link[j].suc;
  link[j].suc = i;
  link[i].pre = j;
  if (isuc >= 0) {
    link[isuc].pre = i;
  }
  link[i].suc = isuc;
}

/*! \relates presolvehlink
    \brief relink vector j in place of vector i

   Replace vector i in the ordering with vector j. This is equivalent to
   <pre>
     int pre = link[i].pre;
     PRESOLVE_REMOVE_LINK(link,i);
     PRESOLVE_INSERT_LINK(link,j,pre);
   </pre>
   But, this routine will work even if i happens to be first in the order.
*/
inline void PRESOLVE_MOVE_LINK(presolvehlink *link, int i, int j)
{
  int ipre = link[i].pre;
  int isuc = link[i].suc;
  if (ipre >= 0) {
    link[ipre].suc = j;
  }
  if (isuc >= 0) {
    link[isuc].pre = j;
  }
  link[i].pre = NO_LINK, link[i].suc = NO_LINK;
}

/*! \class CoinPresolveMatrix
    \brief Augments CoinPrePostsolveMatrix with information about the problem
	   that is only needed during presolve.

  For problem manipulation, this class adds a row-major matrix
  representation, linked lists that allow for easy manipulation of the matrix
  when applying presolve transforms, and vectors to track row and column
  processing status (changed, needs further processing, change prohibited)

  For problem representation, this class adds information about variable type
  (integer or continuous), an objective offset, and a feasibility tolerance.

  <b>NOTE</b> that the #anyInteger_ and #anyProhibited_ flags are independent
  of the vectors used to track this information for individual variables
  (#integerType_ and #rowChanged_ and #colChanged_, respectively).

  <b>NOTE</b> also that at the end of presolve the column-major and row-major
  matrix representations are loosely packed (<i>i.e.</i>, there may be gaps
  between columns in the bulk storage arrays).

  <b>NOTE</b> that while you might think that CoinPresolve is prepared to
  handle minimisation or maximisation, it's unlikely that this still works.
  This is a good thing: better to convert objective coefficients and duals
  once, before starting presolve, rather than doing it over and over in
  each transform that considers dual variables.

  The constructors that take an OSI or ClpSimplex as a parameter really should
  not be here, but for historical reasons they will likely remain for the
  forseeable future.  -- lh, 111202 --
*/

class CoinPresolveMatrix : public CoinPrePostsolveMatrix {
public:
  /*! \brief `Native' constructor

    This constructor creates an empty object which must then be loaded.
    On the other hand, it doesn't assume that the client is an
    OsiSolverInterface.
  */
  CoinPresolveMatrix(int ncols_alloc, int nrows_alloc,
    CoinBigIndex nelems_alloc);

  /*! \brief Clp OSI constructor

    See Clp code for the definition.
  */
  CoinPresolveMatrix(int ncols0,
    double maxmin,
    // end prepost members

    ClpSimplex *si,

    // rowrep
    int nrows,
    CoinBigIndex nelems,
    bool doStatus,
    double nonLinearVariable,
    double bulkRatio);

  /*! \brief Update the model held by a Clp OSI */
  void update_model(ClpSimplex *si,
    int nrows0,
    int ncols0,
    CoinBigIndex nelems0);
  /*! \brief Generic OSI constructor

    See OSI code for the definition.
  */
  CoinPresolveMatrix(int ncols0,
    double maxmin,
    // end prepost members
    OsiSolverInterface *si,
    // rowrep
    int nrows,
    CoinBigIndex nelems,
    bool doStatus,
    double nonLinearVariable,
    const char *prohibited,
    const char *rowProhibited = NULL);

  /*! \brief Update the model held by a generic OSI */
  void update_model(OsiSolverInterface *si,
    int nrows0,
    int ncols0,
    CoinBigIndex nelems0);

  /// Destructor
  ~CoinPresolveMatrix();

  /*! \brief Initialize a CoinPostsolveMatrix object, destroying the
	     CoinPresolveMatrix object.

    See CoinPostsolveMatrix::assignPresolveToPostsolve.
  */
  friend void assignPresolveToPostsolve(CoinPresolveMatrix *&preObj);

  /*! \name Functions to load the problem representation
  */
  //@{
  /*! \brief Load the cofficient matrix.

    Load the coefficient matrix before loading the other vectors (bounds,
    objective, variable type) required to define the problem.
  */
  void setMatrix(const CoinPackedMatrix *mtx);

  /// Count number of empty rows
  inline int countEmptyRows()
  {
    int empty = 0;
    for (int i = 0; i < nrows_; i++)
      if (hinrow_[i] == 0)
        empty++;
    return (empty);
  }

  /*! \brief Set variable type information for a single variable

    Set \p variableType to 0 for continous, 1 for integer.
    Does not manipulate the #anyInteger_ flag.
  */
  inline void setVariableType(int i, int variableType)
  {
    if (integerType_ == 0)
      integerType_ = new unsigned char[ncols0_];
    integerType_[i] = static_cast< unsigned char >(variableType);
  }

  /*! \brief Set variable type information for all variables
  
    Set \p variableType[i] to 0 for continuous, 1 for integer.
    Does not manipulate the #anyInteger_ flag.
  */
  void setVariableType(const unsigned char *variableType, int lenParam);

  /*! \brief Set the type of all variables

    allIntegers should be true to set the type to integer, false to set the
    type to continuous.
  */
  void setVariableType(bool allIntegers, int lenParam);

  /// Set a flag for presence (true) or absence (false) of integer variables
  inline void setAnyInteger(bool anyInteger = true)
  {
    anyInteger_ = anyInteger;
  }
  //@}

  /*! \name Functions to retrieve problem information
  */
  //@{

  /// Get row start vector for row-major packed matrix
  inline const CoinBigIndex *getRowStarts() const
  {
    return (mrstrt_);
  }
  /// Get vector of column indices for row-major packed matrix
  inline const int *getColIndicesByRow() const
  {
    return (hcol_);
  }
  /// Get vector of elements for row-major packed matrix
  inline const double *getElementsByRow() const
  {
    return (rowels_);
  }

  /*! \brief Check for integrality of the specified variable.

    Consults the #integerType_ vector if present; fallback is the
    #anyInteger_ flag.
  */
  inline bool isInteger(int i) const
  {
    if (integerType_ == 0) {
      return (anyInteger_);
    } else if (integerType_[i] == 1) {
      return (true);
    } else {
      return (false);
    }
  }

  /*! \brief Check if there are any integer variables

    Consults the #anyInteger_ flag
  */
  inline bool anyInteger() const
  {
    return (anyInteger_);
  }
  /// Picks up any special options
  inline int presolveOptions() const
  {
    return presolveOptions_;
  }
  /// Sets any special options (see #presolveOptions_)
  inline void setPresolveOptions(int value)
  {
    presolveOptions_ = value;
  }
  //@}

  /*! \name Matrix storage management links
  
    Linked lists, modelled after the linked lists used in OSL
    factorization. They are used for management of the bulk coefficient
    and minor index storage areas.
  */
  //@{
  /// Linked list for the column-major representation.
  presolvehlink *clink_;
  /// Linked list for the row-major representation.
  presolvehlink *rlink_;
  //@}

  /// Objective function offset introduced during presolve
  double dobias_;

  /// Adjust objective function constant offset
  inline void change_bias(double change_amount)
  {
    dobias_ += change_amount;
#if PRESOLVE_DEBUG > 2
    assert(fabs(change_amount) < 1.0e50);
    if (change_amount)
      PRESOLVE_STMT(printf("changing bias by %g to %g\n",
        change_amount, dobias_));
#endif
  }

  /*! \name Row-major representation

    Common row-major format: A pair of vectors with positional
    correspondence to hold coefficients and column indices, and a second pair
    of vectors giving the starting position and length of each row in
    the first pair.
  */
  //@{
  /// Vector of row start positions in #hcol, #rowels_
  CoinBigIndex *mrstrt_;
  /// Vector of row lengths
  int *hinrow_;
  /// Coefficients (positional correspondence with #hcol_)
  double *rowels_;
  /// Column indices (positional correspondence with #rowels_)
  int *hcol_;
  //@}

  /// Tracks integrality of columns (1 for integer, 0 for continuous)
  unsigned char *integerType_;
  /*! \brief Flag to say if any variables are integer

    Note that this flag is <i>not</i> manipulated by the various
    \c setVariableType routines.
  */
  bool anyInteger_;
  /// Print statistics for tuning
  bool tuning_;
  /// Say we want statistics - also set time
  void statistics();
  /// Start time of presolve
  double startTime_;

  /// Bounds can be moved by this to retain feasibility
  double feasibilityTolerance_;
  /// Return feasibility tolerance
  inline double feasibilityTolerance()
  {
    return (feasibilityTolerance_);
  }
  /// Set feasibility tolerance
  inline void setFeasibilityTolerance(double val)
  {
    feasibilityTolerance_ = val;
  }

  /*! \brief Output status: 0 = feasible, 1 = infeasible, 2 = unbounded

    Actually implemented as single bit flags: 1^0 = infeasible, 1^1 =
    unbounded.
  */
  int status_;
  /// Returns problem status (0 = feasible, 1 = infeasible, 2 = unbounded)
  inline int status()
  {
    return (status_);
  }
  /// Set problem status
  inline void setStatus(int status)
  {
    status_ = (status & 0x3);
  }

  /*! \brief Presolve pass number

    Should be incremented externally by the method controlling application of
    presolve transforms.
    Used to control the execution of testRedundant (evoked by the
    implied_free transform).
  */
  int pass_;
  /// Set pass number
  inline void setPass(int pass = 0)
  {
    pass_ = pass;
  }

  /*! \brief Maximum substitution level

    Used to control the execution of subst from implied_free
  */
  int maxSubstLevel_;
  /// Set Maximum substitution level (normally 3)
  inline void setMaximumSubstitutionLevel(int level)
  {
    maxSubstLevel_ = level;
  }

  /*! \name Row and column processing status

    Information used to determine if rows or columns can be changed and
    if they require further processing due to changes.

    There are four major lists: the [row,col]ToDo list, and the
    [row,col]NextToDo list.  In general, a transform processes entries from
    the ToDo list and adds entries to the NextToDo list.

    There are two vectors, [row,col]Changed, which track the status of
    individual rows and columns.
  */
  //@{
  /*! \brief Column change status information

    Coded using the following bits:
    <ul>
      <li> 0x01: Column has changed
      <li> 0x02: preprocessing prohibited
      <li> 0x04: Column has been used
      <li> 0x08: Column originally had infinite ub
    </ul>
  */
  unsigned char *colChanged_;
  /// Input list of columns to process
  int *colsToDo_;
  /// Length of #colsToDo_
  int numberColsToDo_;
  /// Output list of columns to process next
  int *nextColsToDo_;
  /// Length of #nextColsToDo_
  int numberNextColsToDo_;

  /*! \brief Row change status information

    Coded using the following bits:
    <ul>
      <li> 0x01: Row has changed
      <li> 0x02: preprocessing prohibited
      <li> 0x04: Row has been used
    </ul>
  */
  unsigned char *rowChanged_;
  /// Input list of rows to process
  int *rowsToDo_;
  /// Length of #rowsToDo_
  int numberRowsToDo_;
  /// Output list of rows to process next
  int *nextRowsToDo_;
  /// Length of #nextRowsToDo_
  int numberNextRowsToDo_;
  /*! \brief Fine control over presolve actions

    Set/clear the following bits to allow or suppress actions:
      - 0x01 allow duplicate column tests for integer variables
      - 0x02 not used
      - 0x04 set to inhibit x+y+z=1 mods
      - 0x08 not used
      - 0x10 set to allow stuff which won't unroll easily (overlapping
          duplicate rows; opportunistic fixing of variables from bound
	  propagation).
      - 0x04000 allow presolve transforms to arbitrarily ignore infeasibility
          and set arbitrary feasible bounds.
      - 0x10000 instructs implied_free_action to be `more lightweight'; will
          return without doing anything after 15 presolve passes.
      - 0x(2,4,6)0000 instructs implied_free_action to remove small created elements
      - 0x80000000 set by presolve to say dupcol_action compressed columns
  */
  int presolveOptions_;
  /*! Flag to say if any rows or columns are marked as prohibited

    Note that this flag is <i>not</i> manipulated by any of the
    various \c set*Prohibited routines.
  */
  bool anyProhibited_;
  //@}

  /*! \name Scratch work arrays

    Preallocated work arrays are useful to avoid having to allocate and free
    work arrays in individual presolve methods.

    All are allocated from #setMatrix by #initializeStuff, freed from
    #~CoinPresolveMatrix.  You can use #deleteStuff followed by
    #initializeStuff to remove and recreate them.
  */
  //@{
  /// Preallocated scratch work array, 3*nrows_
  int *usefulRowInt_;
  /// Preallocated scratch work array, 2*nrows_
  double *usefulRowDouble_;
  /// Preallocated scratch work array, 2*ncols_
  int *usefulColumnInt_;
  /// Preallocated scratch work array, ncols_
  double *usefulColumnDouble_;
  /// Array of random numbers (max row,column)
  double *randomNumber_;

  /// Work array for count of infinite contributions to row lhs upper bound
  int *infiniteUp_;
  /// Work array for sum of finite contributions to row lhs upper bound
  double *sumUp_;
  /// Work array for count of infinite contributions to row lhs lower bound
  int *infiniteDown_;
  /// Work array for sum of finite contributions to row lhs lower bound
  double *sumDown_;
  //@}

  /*! \brief Recompute row lhs bounds

    Calculate finite contributions to row lhs upper and lower bounds
    and count infinite contributions. Returns the number of rows found
    to be infeasible.

    If \p whichRow < 0, bounds are recomputed for all rows.

    As of 110611, this seems to be a work in progress in the sense that it's
    barely used by the existing presolve code.
  */
  int recomputeSums(int whichRow);

  /// Allocate scratch arrays
  void initializeStuff();
  /// Free scratch arrays
  void deleteStuff();

  /*! \name Functions to manipulate row and column processing status */
  //@{

  /*! \brief Initialise the column ToDo lists

    Places all columns in the #colsToDo_ list except for columns marked
    as prohibited (<i>viz.</i> #colChanged_).
  */
  void initColsToDo();

  /*! \brief Step column ToDo lists

    Moves columns on the #nextColsToDo_ list to the #colsToDo_ list, emptying
    #nextColsToDo_. Returns the number of columns transferred.
  */
  int stepColsToDo();

  /// Return the number of columns on the #colsToDo_ list
  inline int numberColsToDo()
  {
    return (numberColsToDo_);
  }

  /// Has column been changed?
  inline bool colChanged(int i) const
  {
    return (colChanged_[i] & 1) != 0;
  }
  /// Mark column as not changed
  inline void unsetColChanged(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] & (~1));
  }
  /// Mark column as changed.
  inline void setColChanged(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] | (1));
  }
  /// Mark column as changed and add to list of columns to process next
  inline void addCol(int i)
  {
    if ((colChanged_[i] & 1) == 0) {
      colChanged_[i] = static_cast< unsigned char >(colChanged_[i] | (1));
      nextColsToDo_[numberNextColsToDo_++] = i;
    }
  }
  /// Test if column is eligible for preprocessing
  inline bool colProhibited(int i) const
  {
    return (colChanged_[i] & 2) != 0;
  }
  /*! \brief Test if column is eligible for preprocessing

    The difference between this method and #colProhibited() is that this
    method first tests #anyProhibited_ before examining the specific entry
    for the specified column.
  */
  inline bool colProhibited2(int i) const
  {
    if (!anyProhibited_)
      return false;
    else
      return (colChanged_[i] & 2) != 0;
  }
  /// Mark column as ineligible for preprocessing
  inline void setColProhibited(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] | (2));
  }
  /*! \brief Test if column is marked as used
  
    This is for doing faster lookups to see where two columns have entries
    in common.
  */
  inline bool colUsed(int i) const
  {
    return (colChanged_[i] & 4) != 0;
  }
  /// Mark column as used
  inline void setColUsed(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] | (4));
  }
  /// Mark column as unused
  inline void unsetColUsed(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] & (~4));
  }
  /// Has column infinite ub (originally)
  inline bool colInfinite(int i) const
  {
    return (colChanged_[i] & 8) != 0;
  }
  /// Mark column as not infinite ub (originally)
  inline void unsetColInfinite(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] & (~8));
  }
  /// Mark column as infinite ub (originally)
  inline void setColInfinite(int i)
  {
    colChanged_[i] = static_cast< unsigned char >(colChanged_[i] | (8));
  }

  /*! \brief Initialise the row ToDo lists

    Places all rows in the #rowsToDo_ list except for rows marked
    as prohibited (<i>viz.</i> #rowChanged_).
  */
  void initRowsToDo();

  /*! \brief Step row ToDo lists

    Moves rows on the #nextRowsToDo_ list to the #rowsToDo_ list, emptying
    #nextRowsToDo_. Returns the number of rows transferred.
  */
  int stepRowsToDo();

  /// Return the number of rows on the #rowsToDo_ list
  inline int numberRowsToDo()
  {
    return (numberRowsToDo_);
  }

  /// Has row been changed?
  inline bool rowChanged(int i) const
  {
    return (rowChanged_[i] & 1) != 0;
  }
  /// Mark row as not changed
  inline void unsetRowChanged(int i)
  {
    rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] & (~1));
  }
  /// Mark row as changed
  inline void setRowChanged(int i)
  {
    rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] | (1));
  }
  /// Mark row as changed and add to list of rows to process next
  inline void addRow(int i)
  {
    if ((rowChanged_[i] & 1) == 0) {
      rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] | (1));
      nextRowsToDo_[numberNextRowsToDo_++] = i;
    }
  }
  /// Test if row is eligible for preprocessing
  inline bool rowProhibited(int i) const
  {
    return (rowChanged_[i] & 2) != 0;
  }
  /*! \brief Test if row is eligible for preprocessing

    The difference between this method and #rowProhibited() is that this
    method first tests #anyProhibited_ before examining the specific entry
    for the specified row.
  */
  inline bool rowProhibited2(int i) const
  {
    if (!anyProhibited_)
      return false;
    else
      return (rowChanged_[i] & 2) != 0;
  }
  /// Mark row as ineligible for preprocessing
  inline void setRowProhibited(int i)
  {
    rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] | (2));
  }
  /*! \brief Test if row is marked as used

     This is for doing faster lookups to see where two rows have entries
     in common.  It can be used anywhere as long as it ends up zeroed out.
  */
  inline bool rowUsed(int i) const
  {
    return (rowChanged_[i] & 4) != 0;
  }
  /// Mark row as used
  inline void setRowUsed(int i)
  {
    rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] | (4));
  }
  /// Mark row as unused
  inline void unsetRowUsed(int i)
  {
    rowChanged_[i] = static_cast< unsigned char >(rowChanged_[i] & (~4));
  }

  /// Check if there are any prohibited rows or columns
  inline bool anyProhibited() const
  {
    return anyProhibited_;
  }
  /// Set a flag for presence of prohibited rows or columns
  inline void setAnyProhibited(bool val = true)
  {
    anyProhibited_ = val;
  }
  //@}
};

/*! \class CoinPostsolveMatrix
    \brief Augments CoinPrePostsolveMatrix with information about the problem
	   that is only needed during postsolve.

  The notable point is that the matrix representation is threaded. The
  representation is column-major and starts with the standard two pairs of
  arrays: one pair to hold the row indices and coefficients, the second pair
  to hold the column starting positions and lengths. But the row indices and
  coefficients for a column do not necessarily occupy a contiguous block in
  their respective arrays. Instead, a link array gives the position of the
  next (row index,coefficient) pair. If the row index and value of a
  coefficient a<p,j> occupy position kp in their arrays, then the position of
  the next coefficient a<q,j> is found as kq = link[kp].

  This threaded representation allows for efficient expansion of columns as
  rows are reintroduced during postsolve transformations. The basic packed
  structures are allocated to the expected size of the postsolved matrix,
  and as new coefficients are added, their location is simply added to the
  thread for the column.

  There is no provision to convert the threaded representation to a packed
  representation. In the context of postsolve, it's not required. (You did
  keep a copy of the original matrix, eh?)

  The constructors that take an OSI or ClpSimplex as a parameter really should
  not be here, but for historical reasons they will likely remain for the
  forseeable future.  -- lh, 111202 --
*/
class CoinPostsolveMatrix : public CoinPrePostsolveMatrix {
public:
  /*! \brief `Native' constructor

    This constructor creates an empty object which must then be loaded.
    On the other hand, it doesn't assume that the client is an
    OsiSolverInterface.
  */
  CoinPostsolveMatrix(int ncols_alloc, int nrows_alloc,
    CoinBigIndex nelems_alloc);

  /*! \brief Clp OSI constructor

    See Clp code for the definition.
  */
  CoinPostsolveMatrix(ClpSimplex *si,

    int ncols0,
    int nrows0,
    CoinBigIndex nelems0,

    double maxmin_,
    // end prepost members

    double *sol,
    double *acts,

    unsigned char *colstat,
    unsigned char *rowstat);

  /*! \brief Generic OSI constructor

    See OSI code for the definition.
  */
  CoinPostsolveMatrix(OsiSolverInterface *si,

    int ncols0,
    int nrows0,
    CoinBigIndex nelems0,

    double maxmin_,
    // end prepost members

    double *sol,
    double *acts,

    unsigned char *colstat,
    unsigned char *rowstat);

  /*! \brief Load an empty CoinPostsolveMatrix from a CoinPresolveMatrix

    This routine transfers the contents of the CoinPrePostsolveMatrix
    object from the CoinPresolveMatrix object to the CoinPostsolveMatrix
    object and completes initialisation of the CoinPostsolveMatrix object.
    The empty shell of the CoinPresolveMatrix object is destroyed.

    The routine expects an empty CoinPostsolveMatrix object. If handed a loaded
    object, a lot of memory will leak.
  */
  void assignPresolveToPostsolve(CoinPresolveMatrix *&preObj);

  /// Destructor
  ~CoinPostsolveMatrix();

  /*! \name Column thread structures

    As mentioned in the class documentation, the entries for a given column
    do not necessarily occupy a contiguous block of space. The #link_ array
    is used to maintain the threading. There is one thread for each column,
    and a single thread for all free entries in #hrow_ and #colels_.

    The allocated size of #link_ must be at least as large as the allocated
    size of #hrow_ and #colels_.
  */
  //@{

  /*! \brief First entry in free entries thread */
  CoinBigIndex free_list_;
  /// Allocated size of #link_
  CoinBigIndex maxlink_;
  /*! \brief Thread array

    Within a thread, link_[k] points to the next entry in the thread.
  */
  CoinBigIndex *link_;

  //@}

  /*! \name Debugging aids

     These arrays are allocated only when CoinPresolve is compiled with
     PRESOLVE_DEBUG defined. They hold codes which track the reason that
     a column or row is added to the problem during postsolve.
  */
  //@{
  char *cdone_;
  char *rdone_;
  //@}

  /// debug
  void check_nbasic();
};

/*! \defgroup MtxManip Presolve Matrix Manipulation Functions

  Functions to work with the loosely packed and threaded packed matrix
  structures used during presolve and postsolve.
*/
//@{

/*! \relates CoinPrePostsolveMatrix
    \brief Initialise linked list for major vector order in bulk storage
*/

void presolve_make_memlists(/*CoinBigIndex *starts,*/ int *lengths,
  presolvehlink *link, int n);

/*! \relates CoinPrePostsolveMatrix
    \brief Make sure a major-dimension vector k has room for one more
	   coefficient.

    You can use this directly, or use the inline wrappers presolve_expand_col
    and presolve_expand_row
*/
bool presolve_expand_major(CoinBigIndex *majstrts, double *majels,
  int *minndxs, int *majlens,
  presolvehlink *majlinks, int nmaj, int k);

/*! \relates CoinPrePostsolveMatrix
    \brief Make sure a column (colx) in a column-major matrix has room for
	   one more coefficient
*/

inline bool presolve_expand_col(CoinBigIndex *mcstrt, double *colels,
  int *hrow, int *hincol,
  presolvehlink *clink, int ncols, int colx)
{
  return presolve_expand_major(mcstrt, colels,
    hrow, hincol, clink, ncols, colx);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Make sure a row (rowx) in a row-major matrix has room for one
	   more coefficient
*/

inline bool presolve_expand_row(CoinBigIndex *mrstrt, double *rowels,
  int *hcol, int *hinrow,
  presolvehlink *rlink, int nrows, int rowx)
{
  return presolve_expand_major(mrstrt, rowels,
    hcol, hinrow, rlink, nrows, rowx);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Find position of a minor index in a major vector.

    The routine returns the position \c k in \p minndxs for the specified
    minor index \p tgt. It will abort if the entry does not exist. Can be
    used directly or via the inline wrappers presolve_find_row and
    presolve_find_col.
*/
inline CoinBigIndex presolve_find_minor(int tgt,
  CoinBigIndex ks, CoinBigIndex ke,
  const int *minndxs)
{
  CoinBigIndex k;
  for (k = ks; k < ke; k++)
#ifndef NDEBUG
  {
    if (minndxs[k] == tgt)
      return (k);
  }
  DIE("FIND_MINOR");

  abort();
  return -1;
#else
  {
    if (minndxs[k] == tgt)
      break;
  }
  return (k);
#endif
}

/*! \relates CoinPrePostsolveMatrix
    \brief Find position of a row in a column in a column-major matrix.

    The routine returns the position \c k in \p hrow for the specified \p row.
    It will abort if the entry does not exist.
*/
inline CoinBigIndex presolve_find_row(int row, CoinBigIndex kcs,
  CoinBigIndex kce, const int *hrow)
{
  return presolve_find_minor(row, kcs, kce, hrow);
}

/*! \relates CoinPostsolveMatrix
    \brief Find position of a column in a row in a row-major matrix.

    The routine returns the position \c k in \p hcol for the specified \p col.
    It will abort if the entry does not exist.
*/
inline CoinBigIndex presolve_find_col(int col, CoinBigIndex krs,
  CoinBigIndex kre, const int *hcol)
{
  return presolve_find_minor(col, krs, kre, hcol);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Find position of a minor index in a major vector.

    The routine returns the position \c k in \p minndxs for the specified
    minor index \p tgt.  A return value of \p ke means the entry does not
    exist.  Can be used directly or via the inline wrappers
    presolve_find_row1 and presolve_find_col1.
*/
CoinBigIndex presolve_find_minor1(int tgt, CoinBigIndex ks, CoinBigIndex ke,
  const int *minndxs);

/*! \relates CoinPrePostsolveMatrix
    \brief Find position of a row in a column in a column-major matrix.

    The routine returns the position \c k in \p hrow for the specified \p row.
    A return value of \p kce means the entry does not exist.
*/
inline CoinBigIndex presolve_find_row1(int row, CoinBigIndex kcs,
  CoinBigIndex kce, const int *hrow)
{
  return presolve_find_minor1(row, kcs, kce, hrow);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Find position of a column in a row in a row-major matrix.

    The routine returns the position \c k in \p hcol for the specified \p col.
    A return value of \p kre means the entry does not exist.
*/
inline CoinBigIndex presolve_find_col1(int col, CoinBigIndex krs,
  CoinBigIndex kre, const int *hcol)
{
  return presolve_find_minor1(col, krs, kre, hcol);
}

/*! \relates CoinPostsolveMatrix
    \brief Find position of a minor index in a major vector in a threaded
	   matrix.

    The routine returns the position \c k in \p minndxs for the specified
    minor index \p tgt. It will abort if the entry does not exist. Can be
    used directly or via the inline wrapper presolve_find_row2.
*/
CoinBigIndex presolve_find_minor2(int tgt, CoinBigIndex ks, int majlen,
  const int *minndxs,
  const CoinBigIndex *majlinks);

/*! \relates CoinPostsolveMatrix
    \brief Find position of a row in a column in a column-major threaded
	   matrix.

    The routine returns the position \c k in \p hrow for the specified \p row.
    It will abort if the entry does not exist.
*/
inline CoinBigIndex presolve_find_row2(int row, CoinBigIndex kcs, int collen,
  const int *hrow,
  const CoinBigIndex *clinks)
{
  return presolve_find_minor2(row, kcs, collen, hrow, clinks);
}

/*! \relates CoinPostsolveMatrix
    \brief Find position of a minor index in a major vector in a threaded
	   matrix.

    The routine returns the position \c k in \p minndxs for the specified
    minor index \p tgt. It will return -1 if the entry does not exist.
    Can be used directly or via the inline wrappers presolve_find_row3.
*/
CoinBigIndex presolve_find_minor3(int tgt, CoinBigIndex ks, int majlen,
  const int *minndxs,
  const CoinBigIndex *majlinks);

/*! \relates CoinPostsolveMatrix
    \brief Find position of a row in a column in a column-major threaded
	   matrix.

    The routine returns the position \c k in \p hrow for the specified \p row.
    It will return -1 if the entry does not exist.
*/
inline CoinBigIndex presolve_find_row3(int row, CoinBigIndex kcs, int collen,
  const int *hrow,
  const CoinBigIndex *clinks)
{
  return presolve_find_minor3(row, kcs, collen, hrow, clinks);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Delete the entry for a minor index from a major vector.

   Deletes the entry for \p minndx from the major vector \p majndx.
   Specifically, the relevant entries are removed from the minor index
   (\p minndxs) and coefficient (\p els) arrays and the vector length (\p
   majlens) is decremented.  Loose packing is maintained by swapping the last
   entry in the row into the position occupied by the deleted entry.
*/
inline void presolve_delete_from_major(int majndx, int minndx,
  const CoinBigIndex *majstrts,
  int *majlens, int *minndxs, double *els)
{
  const CoinBigIndex ks = majstrts[majndx];
  const CoinBigIndex ke = ks + majlens[majndx];

  const CoinBigIndex kmi = presolve_find_minor(minndx, ks, ke, minndxs);

  minndxs[kmi] = minndxs[ke - 1];
  els[kmi] = els[ke - 1];
  majlens[majndx]--;

  return;
}

/*! \relates CoinPrePostsolveMatrix
    \brief Delete marked entries

    Removes the entries specified in \p marked, compressing the major vector
    to maintain loose packing. \p marked is cleared in the process.
*/
inline void presolve_delete_many_from_major(int majndx, char *marked,
  const CoinBigIndex *majstrts,
  int *majlens, int *minndxs, double *els)
{
  const CoinBigIndex ks = majstrts[majndx];
  const CoinBigIndex ke = ks + majlens[majndx];
  CoinBigIndex put = ks;
  for (CoinBigIndex k = ks; k < ke; k++) {
    int iMinor = minndxs[k];
    if (!marked[iMinor]) {
      minndxs[put] = iMinor;
      els[put++] = els[k];
    } else {
      marked[iMinor] = 0;
    }
  }
  majlens[majndx] = static_cast< int >(put - ks);
  return;
}

/*! \relates CoinPrePostsolveMatrix
    \brief Delete the entry for row \p row from column \p col in a
	   column-major matrix

   Deletes the entry for \p row from the major vector for \p col.
   Specifically, the relevant entries are removed from the row index (\p
   hrow) and coefficient (\p colels) arrays and the vector length (\p
   hincol) is decremented.  Loose packing is maintained by swapping the last
   entry in the row into the position occupied by the deleted entry.
*/
inline void presolve_delete_from_col(int row, int col,
  const CoinBigIndex *mcstrt,
  int *hincol, int *hrow, double *colels)
{
  presolve_delete_from_major(col, row, mcstrt, hincol, hrow, colels);
}

/*! \relates CoinPrePostsolveMatrix
    \brief Delete the entry for column \p col from row \p row in a
	   row-major matrix

   Deletes the entry for \p col from the major vector for \p row.
   Specifically, the relevant entries are removed from the column index (\p
   hcol) and coefficient (\p rowels) arrays and the vector length (\p
   hinrow) is decremented.  Loose packing is maintained by swapping the last
   entry in the column into the position occupied by the deleted entry.
*/
inline void presolve_delete_from_row(int row, int col,
  const CoinBigIndex *mrstrt,
  int *hinrow, int *hcol, double *rowels)
{
  presolve_delete_from_major(row, col, mrstrt, hinrow, hcol, rowels);
}

/*! \relates CoinPostsolveMatrix
    \brief Delete the entry for a minor index from a major vector in a
    threaded matrix.

   Deletes the entry for \p minndx from the major vector \p majndx.
   Specifically, the relevant entries are removed from the minor index (\p
   minndxs) and coefficient (\p els) arrays and the vector length (\p
   majlens) is decremented. The thread for the major vector is relinked
   around the deleted entry and the space is returned to the free list.
*/
void presolve_delete_from_major2(int majndx, int minndx,
  CoinBigIndex *majstrts, int *majlens,
  int *minndxs, CoinBigIndex *majlinks,
  CoinBigIndex *free_listp);

/*! \relates CoinPostsolveMatrix
    \brief Delete the entry for row \p row from column \p col in a
	   column-major threaded matrix

   Deletes the entry for \p row from the major vector for \p col.
   Specifically, the relevant entries are removed from the row index (\p
   hrow) and coefficient (\p colels) arrays and the vector length (\p
   hincol) is decremented. The thread for the major vector is relinked
   around the deleted entry and the space is returned to the free list.
*/
inline void presolve_delete_from_col2(int row, int col, CoinBigIndex *mcstrt,
  int *hincol, int *hrow,
  CoinBigIndex *clinks, CoinBigIndex *free_listp)
{
  presolve_delete_from_major2(col, row, mcstrt, hincol, hrow, clinks, free_listp);
}

//@}

/*! \defgroup PresolveUtilities Presolve Utility Functions

  Utilities used by multiple presolve transform objects.
*/
//@{

/*! \brief Duplicate a major-dimension vector; optionally omit the entry
	   with minor index \p tgt.

    Designed to copy a major-dimension vector from the paired coefficient
    (\p elems) and minor index (\p indices) arrays used in the standard
    packed matrix representation. Copies \p length entries starting at
    \p offset.
    
    If \p tgt is specified, the entry with minor index == \p tgt is
    omitted from the copy.
*/
double *presolve_dupmajor(const double *elems, const int *indices,
  int length, CoinBigIndex offset, int tgt = -1);

/// Initialize a vector with random numbers
void coin_init_random_vec(double *work, int n);

//@}

#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/