ClpSolve.hpp 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/* $Id$ */
// Copyright (C) 2003, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
/*
   Authors

   John Forrest

 */
#ifndef ClpSolve_H
#define ClpSolve_H

/**
    This is a very simple class to guide algorithms.  It is used to tidy up
    passing parameters to initialSolve and maybe for output from that

*/

class ClpSolve {

public:
  /** enums for solve function */
  enum SolveType {
    useDual = 0,
    usePrimal,
    usePrimalorSprint,
    useBarrier,
    useBarrierNoCross,
    automatic,
    tryDantzigWolfe,
    tryBenders,
    notImplemented
  };
  enum PresolveType {
    presolveOn = 0,
    presolveOff,
    presolveNumber,
    presolveNumberCost
  };

  /**@name Constructors and destructor and copy */
  //@{
  /// Default constructor
  ClpSolve();
  /// Constructor when you really know what you are doing
  ClpSolve(SolveType method, PresolveType presolveType,
    int numberPasses, int options[6],
    int extraInfo[6], int independentOptions[3]);
  /// Generates code for above constructor
  void generateCpp(FILE *fp);
  /// Copy constructor.
  ClpSolve(const ClpSolve &);
  /// Assignment operator. This copies the data
  ClpSolve &operator=(const ClpSolve &rhs);
  /// Destructor
  ~ClpSolve();
  //@}

  /**@name Functions most useful to user */
  //@{
  /** Special options - bits
     0      4 - use crash (default allslack in dual, idiot in primal)
         8 - all slack basis in primal
     2      16 - switch off interrupt handling
     3      32 - do not try and make plus minus one matrix
         64 - do not use sprint even if problem looks good
      */
  /** which translation is:
         which:
         0 - startup in Dual  (nothing if basis exists).:
                      0 - no basis
       	   1 - crash
       	   2 - use initiative about idiot! but no crash
         1 - startup in Primal (nothing if basis exists):
                      0 - use initiative
       	   1 - use crash
       	   2 - use idiot and look at further info
       	   3 - use sprint and look at further info
       	   4 - use all slack
       	   5 - use initiative but no idiot
       	   6 - use initiative but no sprint
       	   7 - use initiative but no crash
                      8 - do allslack or idiot
                      9 - do allslack or sprint
       	   10 - slp before
       	   11 - no nothing and primal(0)
         2 - interrupt handling - 0 yes, 1 no (for threadsafe)
         3 - whether to make +- 1matrix - 0 yes, 1 no
         4 - for barrier
                      0 - dense cholesky
       	   1 - Wssmp allowing some long columns
       	   2 - Wssmp not allowing long columns
       	   3 - Wssmp using KKT
                      4 - Using Florida ordering
       	   8 - bit set to do scaling
       	   16 - set to be aggressive with gamma/delta?
                      32 - Use KKT
         5 - for presolve
                      1 - switch off dual stuff
         6 - extra switches
                      
     */
  void setSpecialOption(int which, int value, int extraInfo = -1);
  int getSpecialOption(int which) const;

  /// Solve types
  void setSolveType(SolveType method, int extraInfo = -1);
  SolveType getSolveType();

  // Presolve types
  void setPresolveType(PresolveType amount, int extraInfo = -1);
  PresolveType getPresolveType();
  int getPresolvePasses() const;
  /// Extra info for idiot (or sprint)
  int getExtraInfo(int which) const;
  /** Say to return at once if infeasible,
         default is to solve */
  void setInfeasibleReturn(bool trueFalse);
  inline bool infeasibleReturn() const
  {
    return independentOptions_[0] != 0;
  }
  /// Whether we want to do dual part of presolve
  inline bool doDual() const
  {
    return (independentOptions_[1] & 1) == 0;
  }
  inline void setDoDual(bool doDual_)
  {
    if (doDual_)
      independentOptions_[1] &= ~1;
    else
      independentOptions_[1] |= 1;
  }
  /// Whether we want to do singleton part of presolve
  inline bool doSingleton() const
  {
    return (independentOptions_[1] & 2) == 0;
  }
  inline void setDoSingleton(bool doSingleton_)
  {
    if (doSingleton_)
      independentOptions_[1] &= ~2;
    else
      independentOptions_[1] |= 2;
  }
  /// Whether we want to do doubleton part of presolve
  inline bool doDoubleton() const
  {
    return (independentOptions_[1] & 4) == 0;
  }
  inline void setDoDoubleton(bool doDoubleton_)
  {
    if (doDoubleton_)
      independentOptions_[1] &= ~4;
    else
      independentOptions_[1] |= 4;
  }
  /// Whether we want to do tripleton part of presolve
  inline bool doTripleton() const
  {
    return (independentOptions_[1] & 8) == 0;
  }
  inline void setDoTripleton(bool doTripleton_)
  {
    if (doTripleton_)
      independentOptions_[1] &= ~8;
    else
      independentOptions_[1] |= 8;
  }
  /// Whether we want to do tighten part of presolve
  inline bool doTighten() const
  {
    return (independentOptions_[1] & 16) == 0;
  }
  inline void setDoTighten(bool doTighten_)
  {
    if (doTighten_)
      independentOptions_[1] &= ~16;
    else
      independentOptions_[1] |= 16;
  }
  /// Whether we want to do forcing part of presolve
  inline bool doForcing() const
  {
    return (independentOptions_[1] & 32) == 0;
  }
  inline void setDoForcing(bool doForcing_)
  {
    if (doForcing_)
      independentOptions_[1] &= ~32;
    else
      independentOptions_[1] |= 32;
  }
  /// Whether we want to do impliedfree part of presolve
  inline bool doImpliedFree() const
  {
    return (independentOptions_[1] & 64) == 0;
  }
  inline void setDoImpliedFree(bool doImpliedfree)
  {
    if (doImpliedfree)
      independentOptions_[1] &= ~64;
    else
      independentOptions_[1] |= 64;
  }
  /// Whether we want to do dupcol part of presolve
  inline bool doDupcol() const
  {
    return (independentOptions_[1] & 128) == 0;
  }
  inline void setDoDupcol(bool doDupcol_)
  {
    if (doDupcol_)
      independentOptions_[1] &= ~128;
    else
      independentOptions_[1] |= 128;
  }
  /// Whether we want to do duprow part of presolve
  inline bool doDuprow() const
  {
    return (independentOptions_[1] & 256) == 0;
  }
  inline void setDoDuprow(bool doDuprow_)
  {
    if (doDuprow_)
      independentOptions_[1] &= ~256;
    else
      independentOptions_[1] |= 256;
  }
  /// Whether we want to do singleton column part of presolve
  inline bool doSingletonColumn() const
  {
    return (independentOptions_[1] & 512) == 0;
  }
  inline void setDoSingletonColumn(bool doSingleton_)
  {
    if (doSingleton_)
      independentOptions_[1] &= ~512;
    else
      independentOptions_[1] |= 512;
  }
  /// Whether we want to kill small substitutions
  inline bool doKillSmall() const
  {
    return (independentOptions_[1] & 8192) == 0;
  }
  inline void setDoKillSmall(bool doKill)
  {
    if (doKill)
      independentOptions_[1] &= ~8192;
    else
      independentOptions_[1] |= 8192;
  }
  /// Set whole group
  inline int presolveActions() const
  {
    return independentOptions_[1] & 0xffffff;
  }
  inline void setPresolveActions(int action)
  {
    independentOptions_[1] = (independentOptions_[1] & 0xff000000) | (action & 0xffffff);
  }
  /// Largest column for substitution (normally 3)
  inline int substitution() const
  {
    return independentOptions_[2];
  }
  inline void setSubstitution(int value)
  {
    independentOptions_[2] = value;
  }
  inline void setIndependentOption(int type, int value)
  {
    independentOptions_[type] = value;
  }
  inline int independentOption(int type) const
  {
    return independentOptions_[type];
  }
  //@}

  ////////////////// data //////////////////
private:
  /**@name data.
     */
  //@{
  /// Solve type
  SolveType method_;
  /// Presolve type
  PresolveType presolveType_;
  /// Amount of presolve
  int numberPasses_;
  /// Options - last is switch for OsiClp
  int options_[7];
  /// Extra information
  int extraInfo_[7];
  /** Extra algorithm dependent options
         0 - if set return from clpsolve if infeasible
         1 - To be copied over to presolve options
         2 - max substitution level
	 If Dantzig Wolfe/benders 0 is number blocks, 2 is #passes (notional)
     */
  int independentOptions_[3];
  //@}
};

/// For saving extra information to see if looping.
class ClpSimplexProgress {

public:
  /**@name Constructors and destructor and copy */
  //@{
  /// Default constructor
  ClpSimplexProgress();

  /// Constructor from model
  ClpSimplexProgress(ClpSimplex *model);

  /// Copy constructor.
  ClpSimplexProgress(const ClpSimplexProgress &);

  /// Assignment operator. This copies the data
  ClpSimplexProgress &operator=(const ClpSimplexProgress &rhs);
  /// Destructor
  ~ClpSimplexProgress();
  /// Resets as much as possible
  void reset();
  /// Fill from model
  void fillFromModel(ClpSimplex *model);

  //@}

  /**@name Check progress */
  //@{
  /** Returns -1 if okay, -n+1 (n number of times bad) if bad but action taken,
         >=0 if give up and use as problem status
     */
  int looping();
  /// Start check at beginning of whileIterating
  void startCheck();
  /// Returns cycle length in whileIterating
  int cycle(int in, int out, int wayIn, int wayOut);

  /// Returns previous objective (if -1) - current if (0)
  double lastObjective(int back = 1) const;
  /// Set real primal infeasibility and move back
  void setInfeasibility(double value);
  /// Returns real primal infeasibility (if -1) - current if (0)
  double lastInfeasibility(int back = 1) const;
  /// Returns number of primal infeasibilities (if -1) - current if (0)
  int numberInfeasibilities(int back = 1) const;
  /// Modify objective e.g. if dual infeasible in dual
  void modifyObjective(double value);
  /// Returns previous iteration number (if -1) - current if (0)
  int lastIterationNumber(int back = 1) const;
  /// clears all iteration numbers (to switch off panic)
  void clearIterationNumbers();
  /// Odd state
  inline void newOddState()
  {
    oddState_ = -oddState_ - 1;
  }
  inline void endOddState()
  {
    oddState_ = abs(oddState_);
  }
  inline void clearOddState()
  {
    oddState_ = 0;
  }
  inline int oddState() const
  {
    return oddState_;
  }
  /// number of bad times
  inline int badTimes() const
  {
    return numberBadTimes_;
  }
  inline void clearBadTimes()
  {
    numberBadTimes_ = 0;
  }
  /// number of really bad times
  inline int reallyBadTimes() const
  {
    return numberReallyBadTimes_;
  }
  inline void incrementReallyBadTimes()
  {
    numberReallyBadTimes_++;
  }
  /// number of times flagged
  inline int timesFlagged() const
  {
    return numberTimesFlagged_;
  }
  inline void clearTimesFlagged()
  {
    numberTimesFlagged_ = 0;
  }
  inline void incrementTimesFlagged()
  {
    numberTimesFlagged_++;
  }

  //@}
  /**@name Data  */
#define CLP_PROGRESS 5
  //#define CLP_PROGRESS_WEIGHT 10
  //@{
  /// Objective values
  double objective_[CLP_PROGRESS];
  /// Sum of infeasibilities for algorithm
  double infeasibility_[CLP_PROGRESS];
  /// Sum of real primal infeasibilities for primal
  double realInfeasibility_[CLP_PROGRESS];
#ifdef CLP_PROGRESS_WEIGHT
  /// Objective values for weights
  double objectiveWeight_[CLP_PROGRESS_WEIGHT];
  /// Sum of infeasibilities for algorithm for weights
  double infeasibilityWeight_[CLP_PROGRESS_WEIGHT];
  /// Sum of real primal infeasibilities for primal for weights
  double realInfeasibilityWeight_[CLP_PROGRESS_WEIGHT];
  /// Drop  for weights
  double drop_;
  /// Best? for weights
  double best_;
#endif
  /// Initial weight for weights
  double initialWeight_;
#define CLP_CYCLE 12
  /// For cycle checking
  //double obj_[CLP_CYCLE];
  int in_[CLP_CYCLE];
  int out_[CLP_CYCLE];
  char way_[CLP_CYCLE];
  /// Pointer back to model so we can get information
  ClpSimplex *model_;
  /// Number of infeasibilities
  int numberInfeasibilities_[CLP_PROGRESS];
  /// Iteration number at which occurred
  int iterationNumber_[CLP_PROGRESS];
#ifdef CLP_PROGRESS_WEIGHT
  /// Number of infeasibilities for weights
  int numberInfeasibilitiesWeight_[CLP_PROGRESS_WEIGHT];
  /// Iteration number at which occurred for weights
  int iterationNumberWeight_[CLP_PROGRESS_WEIGHT];
#endif
  /// Number of times checked (so won't stop too early)
  int numberTimes_;
  /// Number of times it looked like loop
  int numberBadTimes_;
  /// Number really bad times
  int numberReallyBadTimes_;
  /// Number of times no iterations as flagged
  int numberTimesFlagged_;
  /// If things are in an odd state
  int oddState_;
  //@}
};

#include "ClpConfig.h"
#if CLP_HAS_ABC
#include "AbcCommon.hpp"
/// For saving extra information to see if looping.
class AbcSimplexProgress : public ClpSimplexProgress {

public:
  /**@name Constructors and destructor and copy */
  //@{
  /// Default constructor
  AbcSimplexProgress();

  /// Constructor from model
  AbcSimplexProgress(ClpSimplex *model);

  /// Copy constructor.
  AbcSimplexProgress(const AbcSimplexProgress &);

  /// Assignment operator. This copies the data
  AbcSimplexProgress &operator=(const AbcSimplexProgress &rhs);
  /// Destructor
  ~AbcSimplexProgress();

  //@}

  /**@name Check progress */
  //@{
  /** Returns -1 if okay, -n+1 (n number of times bad) if bad but action taken,
         >=0 if give up and use as problem status
     */
  int looping();

  //@}
  /**@name Data  */
  //@}
};
#endif
#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/