ClpNonLinearCost.hpp 13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* $Id$ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef ClpNonLinearCost_H
#define ClpNonLinearCost_H

#include "CoinPragma.hpp"

class ClpSimplex;
class CoinIndexedVector;

/** Trivial class to deal with non linear costs

    I don't make any explicit assumptions about convexity but I am
    sure I do make implicit ones.

    One interesting idea for normal LP's will be to allow non-basic
    variables to come into basis as infeasible i.e. if variable at
    lower bound has very large positive reduced cost (when problem
    is infeasible) could it reduce overall problem infeasibility more
    by bringing it into basis below its lower bound.

    Another feature would be to automatically discover when problems
    are convex piecewise linear and re-formulate to use non-linear.
    I did some work on this many years ago on "grade" problems, but
    while it improved primal interior point algorithms were much better
    for that particular problem.
*/
/* status has original status and current status
   0 - below lower so stored is upper
   1 - in range
   2 - above upper so stored is lower
   4 - (for current) - same as original
*/
#define CLP_BELOW_LOWER 0
#define CLP_FEASIBLE 1
#define CLP_ABOVE_UPPER 2
#define CLP_SAME 4
inline int originalStatus(unsigned char status)
{
  return (status & 15);
}
inline int currentStatus(unsigned char status)
{
  return (status >> 4);
}
inline void setOriginalStatus(unsigned char &status, int value)
{
  status = static_cast< unsigned char >(status & ~15);
  status = static_cast< unsigned char >(status | value);
}
inline void setCurrentStatus(unsigned char &status, int value)
{
  status = static_cast< unsigned char >(status & ~(15 << 4));
  status = static_cast< unsigned char >(status | (value << 4));
}
inline void setInitialStatus(unsigned char &status)
{
  status = static_cast< unsigned char >(CLP_FEASIBLE | (CLP_SAME << 4));
}
inline void setSameStatus(unsigned char &status)
{
  status = static_cast< unsigned char >(status & ~(15 << 4));
  status = static_cast< unsigned char >(status | (CLP_SAME << 4));
}
// Use second version to get more speed
//#define FAST_CLPNON
#ifndef FAST_CLPNON
#define CLP_METHOD1 ((method_ & 1) != 0)
#define CLP_METHOD2 ((method_ & 2) != 0)
#else
#define CLP_METHOD1 (false)
#define CLP_METHOD2 (true)
#endif
class ClpNonLinearCost {

public:
public:
  /**@name Constructors, destructor */
  //@{
  /// Default constructor.
  ClpNonLinearCost();
  /** Constructor from simplex.
         This will just set up wasteful arrays for linear, but
         later may do dual analysis and even finding duplicate columns .
     */
  ClpNonLinearCost(ClpSimplex *model, int method = 1);
  /** Constructor from simplex and list of non-linearities (columns only)
         First lower of each column has to match real lower
         Last lower has to be <= upper (if == then cost ignored)
         This could obviously be changed to make more user friendly
     */
  ClpNonLinearCost(ClpSimplex *model, const int *starts,
    const double *lower, const double *cost);
  /// Destructor
  ~ClpNonLinearCost();
  // Copy
  ClpNonLinearCost(const ClpNonLinearCost &);
  // Assignment
  ClpNonLinearCost &operator=(const ClpNonLinearCost &);
  //@}

  /**@name Actual work in primal */
  //@{
  /** Changes infeasible costs and computes number and cost of infeas
         Puts all non-basic (non free) variables to bounds
         and all free variables to zero if oldTolerance is non-zero
         - but does not move those <= oldTolerance away*/
  void checkInfeasibilities(double oldTolerance = 0.0);
  /** Changes infeasible costs for each variable
         The indices are row indices and need converting to sequences
     */
  void checkInfeasibilities(int numberInArray, const int *index);
  /** Puts back correct infeasible costs for each variable
         The input indices are row indices and need converting to sequences
         for costs.
         On input array is empty (but indices exist).  On exit just
         changed costs will be stored as normal CoinIndexedVector
     */
  void checkChanged(int numberInArray, CoinIndexedVector *update);
  /** Goes through one bound for each variable.
         If multiplier*work[iRow]>0 goes down, otherwise up.
         The indices are row indices and need converting to sequences
         Temporary offsets may be set
         Rhs entries are increased
     */
  void goThru(int numberInArray, double multiplier,
    const int *index, const double *work,
    double *rhs);
  /** Takes off last iteration (i.e. offsets closer to 0)
     */
  void goBack(int numberInArray, const int *index,
    double *rhs);
  /** Puts back correct infeasible costs for each variable
         The input indices are row indices and need converting to sequences
         for costs.
         At the end of this all temporary offsets are zero
     */
  void goBackAll(const CoinIndexedVector *update);
  /// Temporary zeroing of feasible costs
  void zapCosts();
  /// Refreshes costs always makes row costs zero
  void refreshCosts(const double *columnCosts);
  /// Puts feasible bounds into lower and upper
  void feasibleBounds();
  /// Refresh - assuming regions OK
  void refresh();
  /// Refresh one- assuming regions OK
  void refresh(int iSequence);
  /** Sets bounds and cost for one variable
         Returns change in cost
      May need to be inline for speed */
  double setOne(int sequence, double solutionValue);
  /** Sets bounds and infeasible cost and true cost for one variable
         This is for gub and column generation etc */
  void setOne(int sequence, double solutionValue, double lowerValue, double upperValue,
    double costValue = 0.0);
  /** Sets bounds and cost for outgoing variable
         may change value
         Returns direction */
  int setOneOutgoing(int sequence, double &solutionValue);
  /// Returns nearest bound
  double nearest(int sequence, double solutionValue);
  /** Returns change in cost - one down if alpha >0.0, up if <0.0
         Value is current - new
      */
  inline double changeInCost(int sequence, double alpha) const
  {
    double returnValue = 0.0;
    if (CLP_METHOD1) {
      int iRange = whichRange_[sequence] + offset_[sequence];
      if (alpha > 0.0)
        returnValue = cost_[iRange] - cost_[iRange - 1];
      else
        returnValue = cost_[iRange] - cost_[iRange + 1];
    }
    if (CLP_METHOD2) {
      returnValue = (alpha > 0.0) ? infeasibilityWeight_ : -infeasibilityWeight_;
    }
    return returnValue;
  }
  inline double changeUpInCost(int sequence) const
  {
    double returnValue = 0.0;
    if (CLP_METHOD1) {
      int iRange = whichRange_[sequence] + offset_[sequence];
      if (iRange + 1 != start_[sequence + 1] && !infeasible(iRange + 1))
        returnValue = cost_[iRange] - cost_[iRange + 1];
      else
        returnValue = -1.0e100;
    }
    if (CLP_METHOD2) {
      returnValue = -infeasibilityWeight_;
    }
    return returnValue;
  }
  inline double changeDownInCost(int sequence) const
  {
    double returnValue = 0.0;
    if (CLP_METHOD1) {
      int iRange = whichRange_[sequence] + offset_[sequence];
      if (iRange != start_[sequence] && !infeasible(iRange - 1))
        returnValue = cost_[iRange] - cost_[iRange - 1];
      else
        returnValue = 1.0e100;
    }
    if (CLP_METHOD2) {
      returnValue = infeasibilityWeight_;
    }
    return returnValue;
  }
  /// This also updates next bound
  inline double changeInCost(int sequence, double alpha, double &rhs)
  {
    double returnValue = 0.0;
#ifdef NONLIN_DEBUG
    double saveRhs = rhs;
#endif
    if (CLP_METHOD1) {
      int iRange = whichRange_[sequence] + offset_[sequence];
      if (alpha > 0.0) {
        assert(iRange - 1 >= start_[sequence]);
        offset_[sequence]--;
        rhs += lower_[iRange] - lower_[iRange - 1];
        returnValue = alpha * (cost_[iRange] - cost_[iRange - 1]);
      } else {
        assert(iRange + 1 < start_[sequence + 1] - 1);
        offset_[sequence]++;
        rhs += lower_[iRange + 2] - lower_[iRange + 1];
        returnValue = alpha * (cost_[iRange] - cost_[iRange + 1]);
      }
    }
    if (CLP_METHOD2) {
#ifdef NONLIN_DEBUG
      double saveRhs1 = rhs;
      rhs = saveRhs;
#endif
      unsigned char iStatus = status_[sequence];
      int iWhere = currentStatus(iStatus);
      if (iWhere == CLP_SAME)
        iWhere = originalStatus(iStatus);
      // rhs always increases
      if (iWhere == CLP_FEASIBLE) {
        if (alpha > 0.0) {
          // going below
          iWhere = CLP_BELOW_LOWER;
          rhs = COIN_DBL_MAX;
        } else {
          // going above
          iWhere = CLP_ABOVE_UPPER;
          rhs = COIN_DBL_MAX;
        }
      } else if (iWhere == CLP_BELOW_LOWER) {
        assert(alpha < 0);
        // going feasible
        iWhere = CLP_FEASIBLE;
        rhs += bound_[sequence] - model_->upperRegion()[sequence];
      } else {
        assert(iWhere == CLP_ABOVE_UPPER);
        // going feasible
        iWhere = CLP_FEASIBLE;
        rhs += model_->lowerRegion()[sequence] - bound_[sequence];
      }
      setCurrentStatus(status_[sequence], iWhere);
#ifdef NONLIN_DEBUG
      assert(saveRhs1 == rhs);
#endif
      returnValue = fabs(alpha) * infeasibilityWeight_;
    }
    return returnValue;
  }
  /// Returns current lower bound
  inline double lower(int sequence) const
  {
    return lower_[whichRange_[sequence] + offset_[sequence]];
  }
  /// Returns current upper bound
  inline double upper(int sequence) const
  {
    return lower_[whichRange_[sequence] + offset_[sequence] + 1];
  }
  /// Returns current cost
  inline double cost(int sequence) const
  {
    return cost_[whichRange_[sequence] + offset_[sequence]];
  }
  /// Returns full status
  inline int fullStatus(int sequence) const
  {
    return status_[sequence];
  }
  /// Returns if changed from beginning of iteration
  inline bool changed(int sequence) const
  {
    return (status_[sequence] & 64) == 0;
  }

  //@}

  /**@name Gets and sets */
  //@{
  /// Number of infeasibilities
  inline int numberInfeasibilities() const
  {
    return numberInfeasibilities_;
  }
  /// Change in cost
  inline double changeInCost() const
  {
    return changeCost_;
  }
  /// Feasible cost
  inline double feasibleCost() const
  {
    return feasibleCost_;
  }
  /// Feasible cost with offset and direction (i.e. for reporting)
  double feasibleReportCost() const;
  /// Sum of infeasibilities
  inline double sumInfeasibilities() const
  {
    return sumInfeasibilities_;
  }
  /// Largest infeasibility
  inline double largestInfeasibility() const
  {
    return largestInfeasibility_;
  }
  /// Average theta
  inline double averageTheta() const
  {
    return averageTheta_;
  }
  inline void setAverageTheta(double value)
  {
    averageTheta_ = value;
  }
  inline void setChangeInCost(double value)
  {
    changeCost_ = value;
  }
  inline void setMethod(int value)
  {
    method_ = value;
  }
  /// See if may want to look both ways
  inline bool lookBothWays() const
  {
    return bothWays_;
  }
  //@}
  ///@name Private functions to deal with infeasible regions
  inline bool infeasible(int i) const
  {
    return ((infeasible_[i >> 5] >> (i & 31)) & 1) != 0;
  }
  inline void setInfeasible(int i, bool trueFalse)
  {
    unsigned int &value = infeasible_[i >> 5];
    int bit = i & 31;
    if (trueFalse)
      value |= (1 << bit);
    else
      value &= ~(1 << bit);
  }
  inline unsigned char *statusArray() const
  {
    return status_;
  }
  /// For debug
  void validate();
  //@}

private:
  /**@name Data members */
  //@{
  /// Change in cost because of infeasibilities
  double changeCost_;
  /// Feasible cost
  double feasibleCost_;
  /// Current infeasibility weight
  double infeasibilityWeight_;
  /// Largest infeasibility
  double largestInfeasibility_;
  /// Sum of infeasibilities
  double sumInfeasibilities_;
  /// Average theta - kept here as only for primal
  double averageTheta_;
  /// Number of rows (mainly for checking and copy)
  int numberRows_;
  /// Number of columns (mainly for checking and copy)
  int numberColumns_;
  /// Starts for each entry (columns then rows)
  int *start_;
  /// Range for each entry (columns then rows)
  int *whichRange_;
  /// Temporary range offset for each entry (columns then rows)
  int *offset_;
  /** Lower bound for each range (upper bound is next lower).
         For various reasons there is always an infeasible range
         at bottom - even if lower bound is - infinity */
  double *lower_;
  /// Cost for each range
  double *cost_;
  /// Model
  ClpSimplex *model_;
  // Array to say which regions are infeasible
  unsigned int *infeasible_;
  /// Number of infeasibilities found
  int numberInfeasibilities_;
  // new stuff
  /// Contains status at beginning and current
  unsigned char *status_;
  /// Bound which has been replaced in lower_ or upper_
  double *bound_;
  /// Feasible cost array
  double *cost2_;
  /// Method 1 old, 2 new, 3 both!
  int method_;
  /// If all non-linear costs convex
  bool convex_;
  /// If we should look both ways for djs
  bool bothWays_;
  //@}
};

#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/