CbcGeneralDepth.hpp 8.03 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// $Id$
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

// Edwin 11/10/2009-- carved out of CbcBranchActual

#ifndef CbcGeneralDepth_H
#define CbcGeneralDepth_H

#include "CbcGeneral.hpp"
#include "CbcBranchBase.hpp"
#include "CbcSubProblem.hpp"

#ifdef COIN_HAS_CLP

/** Define a catch all class.
    This will create a list of subproblems using partial evaluation
*/
#include "ClpSimplex.hpp"
#include "ClpNode.hpp"

class CbcGeneralDepth : public CbcGeneral {

public:
  // Default Constructor
  CbcGeneralDepth();

  /** Useful constructor
        Just needs to point to model.
        Initial version does evaluation to depth N
        This is stored in CbcModel but may be
        better here
    */
  CbcGeneralDepth(CbcModel *model, int maximumDepth);

  // Copy constructor
  CbcGeneralDepth(const CbcGeneralDepth &);

  /// Clone
  virtual CbcObject *clone() const;

  // Assignment operator
  CbcGeneralDepth &operator=(const CbcGeneralDepth &rhs);

  // Destructor
  ~CbcGeneralDepth();

  /// Infeasibility - large is 0.5
  virtual double infeasibility(const OsiBranchingInformation *info,
    int &preferredWay) const;

  using CbcObject::feasibleRegion;
  /// This looks at solution and sets bounds to contain solution
  virtual void feasibleRegion();

  /// Creates a branching object
  virtual CbcBranchingObject *createCbcBranch(OsiSolverInterface *solver, const OsiBranchingInformation *info, int way);
  /// Return maximum number of nodes
  inline int maximumNodes() const
  {
    return maximumNodes_;
  }
  /// Get maximum depth
  inline int maximumDepth() const
  {
    return maximumDepth_;
  }
  /// Set maximum depth
  inline void setMaximumDepth(int value)
  {
    maximumDepth_ = value;
  }
  /// Return number of nodes
  inline int numberNodes() const
  {
    return numberNodes_;
  }
  /// Get which solution
  inline int whichSolution() const
  {
    return whichSolution_;
  }
  /// Get ClpNode info
  inline ClpNode *nodeInfo(int which)
  {
    return nodeInfo_->nodeInfo_[which];
  }

  /// Redoes data when sequence numbers change
  virtual void redoSequenceEtc(CbcModel *model, int numberColumns, const int *originalColumns);

protected:
  /// data
  /// Maximum depth
  int maximumDepth_;
  /// Maximum nodes
  int maximumNodes_;
  /// Which node has solution (or -1)
  mutable int whichSolution_;
  /// Number of valid nodes (including whichSolution_)
  mutable int numberNodes_;
  /// For solving nodes
  mutable ClpNodeStuff *nodeInfo_;
};
/** Branching object for general objects

 */
class CbcNode;
class CbcGeneralBranchingObject : public CbcBranchingObject {

public:
  // Default Constructor
  CbcGeneralBranchingObject();

  // Useful constructor
  CbcGeneralBranchingObject(CbcModel *model);

  // Copy constructor
  CbcGeneralBranchingObject(const CbcGeneralBranchingObject &);

  // Assignment operator
  CbcGeneralBranchingObject &operator=(const CbcGeneralBranchingObject &rhs);

  /// Clone
  virtual CbcBranchingObject *clone() const;

  // Destructor
  virtual ~CbcGeneralBranchingObject();

  using CbcBranchingObject::branch;
  /// Does next branch and updates state
  virtual double branch();
  /** Double checks in case node can change its mind!
        Can change objective etc */
  virtual void checkIsCutoff(double cutoff);

  using CbcBranchingObject::print;
  /** \brief Print something about branch - only if log level high
    */
  virtual void print();
  /// Fill in current objective etc
  void state(double &objectiveValue, double &sumInfeasibilities,
    int &numberUnsatisfied, int which) const;
  /// Set CbcNode
  inline void setNode(CbcNode *node)
  {
    node_ = node;
  }
  /** Return the type (an integer identifier) of \c this */
  virtual CbcBranchObjType type() const
  {
    return GeneralDepthBranchObj;
  }

  /** Compare the original object of \c this with the original object of \c
        brObj. Assumes that there is an ordering of the original objects.
        This method should be invoked only if \c this and brObj are of the same
        type.
        Return negative/0/positive depending on whether \c this is
        smaller/same/larger than the argument.
    */
  virtual int compareOriginalObject(const CbcBranchingObject *brObj) const;

  /** Compare the \c this with \c brObj. \c this and \c brObj must be os the
        same type and must have the same original object, but they may have
        different feasible regions.
        Return the appropriate CbcRangeCompare value (first argument being the
        sub/superset if that's the case). In case of overlap (and if \c
        replaceIfOverlap is true) replace the current branching object with one
        whose feasible region is the overlap.
     */
  virtual CbcRangeCompare compareBranchingObject(const CbcBranchingObject *brObj, const bool replaceIfOverlap = false);
  /// Number of subproblems
  inline int numberSubProblems() const
  {
    return numberSubProblems_;
  }
  /// Decrement number left and return number
  inline int decrementNumberLeft()
  {
    numberSubLeft_--;
    return numberSubLeft_;
  }
  /// Which node we want to use
  inline int whichNode() const
  {
    return whichNode_;
  }
  /// Set which node we want to use
  inline void setWhichNode(int value)
  {
    whichNode_ = value;
  }
  // Sub problem
  const CbcSubProblem *subProblem(int which) const
  {
    return subProblems_ + which;
  }

public:
  /// data
  // Sub problems
  CbcSubProblem *subProblems_;
  /// Node
  CbcNode *node_;
  /// Number of subproblems
  int numberSubProblems_;
  /// Number of subproblems left
  int numberSubLeft_;
  /// Which node we want to use (-1 for default)
  int whichNode_;
  /// Number of rows
  int numberRows_;
};
/** Branching object for general objects - just one

 */
class CbcOneGeneralBranchingObject : public CbcBranchingObject {

public:
  // Default Constructor
  CbcOneGeneralBranchingObject();

  // Useful constructor
  CbcOneGeneralBranchingObject(CbcModel *model,
    CbcGeneralBranchingObject *object,
    int whichOne);

  // Copy constructor
  CbcOneGeneralBranchingObject(const CbcOneGeneralBranchingObject &);

  // Assignment operator
  CbcOneGeneralBranchingObject &operator=(const CbcOneGeneralBranchingObject &rhs);

  /// Clone
  virtual CbcBranchingObject *clone() const;

  // Destructor
  virtual ~CbcOneGeneralBranchingObject();

  using CbcBranchingObject::branch;
  /// Does next branch and updates state
  virtual double branch();
  /** Double checks in case node can change its mind!
        Can change objective etc */
  virtual void checkIsCutoff(double cutoff);

  using CbcBranchingObject::print;
  /** \brief Print something about branch - only if log level high
    */
  virtual void print();
  /** Return the type (an integer identifier) of \c this */
  virtual CbcBranchObjType type() const
  {
    return OneGeneralBranchingObj;
  }

  /** Compare the original object of \c this with the original object of \c
        brObj. Assumes that there is an ordering of the original objects.
        This method should be invoked only if \c this and brObj are of the same
        type.
        Return negative/0/positive depending on whether \c this is
        smaller/same/larger than the argument.
    */
  virtual int compareOriginalObject(const CbcBranchingObject *brObj) const;

  /** Compare the \c this with \c brObj. \c this and \c brObj must be os the
        same type and must have the same original object, but they may have
        different feasible regions.
        Return the appropriate CbcRangeCompare value (first argument being the
        sub/superset if that's the case). In case of overlap (and if \c
        replaceIfOverlap is true) replace the current branching object with one
        whose feasible region is the overlap.
     */
  virtual CbcRangeCompare compareBranchingObject(const CbcBranchingObject *brObj, const bool replaceIfOverlap = false);

public:
  /// data
  /// Object
  CbcGeneralBranchingObject *object_;
  /// Which one
  int whichOne_;
};
#endif //COIN_HAS_CLP
#endif

/* vi: softtabstop=2 shiftwidth=2 expandtab tabstop=2
*/