variant.h 55.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation details of absl/types/variant.h, pulled into a
// separate file to avoid cluttering the top of the API header with
// implementation details.

#ifndef ABSL_TYPES_variant_internal_H_
#define ABSL_TYPES_variant_internal_H_

#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <memory>
#include <stdexcept>
#include <tuple>
#include <type_traits>

#include "absl/base/config.h"
#include "absl/base/internal/identity.h"
#include "absl/base/internal/inline_variable.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/types/bad_variant_access.h"
#include "absl/utility/utility.h"

#if !defined(ABSL_USES_STD_VARIANT)

namespace absl {
ABSL_NAMESPACE_BEGIN

template <class... Types>
class variant;

ABSL_INTERNAL_INLINE_CONSTEXPR(size_t, variant_npos, -1);

template <class T>
struct variant_size;

template <std::size_t I, class T>
struct variant_alternative;

namespace variant_internal {

// NOTE: See specializations below for details.
template <std::size_t I, class T>
struct VariantAlternativeSfinae {};

// Requires: I < variant_size_v<T>.
//
// Value: The Ith type of Types...
template <std::size_t I, class T0, class... Tn>
struct VariantAlternativeSfinae<I, variant<T0, Tn...>>
    : VariantAlternativeSfinae<I - 1, variant<Tn...>> {};

// Value: T0
template <class T0, class... Ts>
struct VariantAlternativeSfinae<0, variant<T0, Ts...>> {
  using type = T0;
};

template <std::size_t I, class T>
using VariantAlternativeSfinaeT = typename VariantAlternativeSfinae<I, T>::type;

// NOTE: Requires T to be a reference type.
template <class T, class U>
struct GiveQualsTo;

template <class T, class U>
struct GiveQualsTo<T&, U> {
  using type = U&;
};

template <class T, class U>
struct GiveQualsTo<T&&, U> {
  using type = U&&;
};

template <class T, class U>
struct GiveQualsTo<const T&, U> {
  using type = const U&;
};

template <class T, class U>
struct GiveQualsTo<const T&&, U> {
  using type = const U&&;
};

template <class T, class U>
struct GiveQualsTo<volatile T&, U> {
  using type = volatile U&;
};

template <class T, class U>
struct GiveQualsTo<volatile T&&, U> {
  using type = volatile U&&;
};

template <class T, class U>
struct GiveQualsTo<volatile const T&, U> {
  using type = volatile const U&;
};

template <class T, class U>
struct GiveQualsTo<volatile const T&&, U> {
  using type = volatile const U&&;
};

template <class T, class U>
using GiveQualsToT = typename GiveQualsTo<T, U>::type;

// Convenience alias, since size_t integral_constant is used a lot in this file.
template <std::size_t I>
using SizeT = std::integral_constant<std::size_t, I>;

using NPos = SizeT<variant_npos>;

template <class Variant, class T, class = void>
struct IndexOfConstructedType {};

template <std::size_t I, class Variant>
struct VariantAccessResultImpl;

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, Variantemplate<T...>&> {
  using type = typename absl::variant_alternative<I, variant<T...>>::type&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, const Variantemplate<T...>&> {
  using type =
      const typename absl::variant_alternative<I, variant<T...>>::type&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, Variantemplate<T...>&&> {
  using type = typename absl::variant_alternative<I, variant<T...>>::type&&;
};

template <std::size_t I, template <class...> class Variantemplate, class... T>
struct VariantAccessResultImpl<I, const Variantemplate<T...>&&> {
  using type =
      const typename absl::variant_alternative<I, variant<T...>>::type&&;
};

template <std::size_t I, class Variant>
using VariantAccessResult =
    typename VariantAccessResultImpl<I, Variant&&>::type;

// NOTE: This is used instead of std::array to reduce instantiation overhead.
template <class T, std::size_t Size>
struct SimpleArray {
  static_assert(Size != 0, "");
  T value[Size];
};

template <class T>
struct AccessedType {
  using type = T;
};

template <class T>
using AccessedTypeT = typename AccessedType<T>::type;

template <class T, std::size_t Size>
struct AccessedType<SimpleArray<T, Size>> {
  using type = AccessedTypeT<T>;
};

template <class T>
constexpr T AccessSimpleArray(const T& value) {
  return value;
}

template <class T, std::size_t Size, class... SizeT>
constexpr AccessedTypeT<T> AccessSimpleArray(const SimpleArray<T, Size>& table,
                                             std::size_t head_index,
                                             SizeT... tail_indices) {
  return AccessSimpleArray(table.value[head_index], tail_indices...);
}

// Note: Intentionally is an alias.
template <class T>
using AlwaysZero = SizeT<0>;

template <class Op, class... Vs>
struct VisitIndicesResultImpl {
  using type = absl::result_of_t<Op(AlwaysZero<Vs>...)>;
};

template <class Op, class... Vs>
using VisitIndicesResultT = typename VisitIndicesResultImpl<Op, Vs...>::type;

template <class ReturnType, class FunctionObject, class EndIndices,
          class BoundIndices>
struct MakeVisitationMatrix;

template <class ReturnType, class FunctionObject, std::size_t... Indices>
constexpr ReturnType call_with_indices(FunctionObject&& function) {
  static_assert(
      std::is_same<ReturnType, decltype(std::declval<FunctionObject>()(
                                   SizeT<Indices>()...))>::value,
      "Not all visitation overloads have the same return type.");
  return absl::forward<FunctionObject>(function)(SizeT<Indices>()...);
}

template <class ReturnType, class FunctionObject, std::size_t... BoundIndices>
struct MakeVisitationMatrix<ReturnType, FunctionObject, index_sequence<>,
                            index_sequence<BoundIndices...>> {
  using ResultType = ReturnType (*)(FunctionObject&&);
  static constexpr ResultType Run() {
    return &call_with_indices<ReturnType, FunctionObject,
                              (BoundIndices - 1)...>;
  }
};

template <typename Is, std::size_t J>
struct AppendToIndexSequence;

template <typename Is, std::size_t J>
using AppendToIndexSequenceT = typename AppendToIndexSequence<Is, J>::type;

template <std::size_t... Is, std::size_t J>
struct AppendToIndexSequence<index_sequence<Is...>, J> {
  using type = index_sequence<Is..., J>;
};

template <class ReturnType, class FunctionObject, class EndIndices,
          class CurrIndices, class BoundIndices>
struct MakeVisitationMatrixImpl;

template <class ReturnType, class FunctionObject, class EndIndices,
          std::size_t... CurrIndices, class BoundIndices>
struct MakeVisitationMatrixImpl<ReturnType, FunctionObject, EndIndices,
                                index_sequence<CurrIndices...>, BoundIndices> {
  using ResultType = SimpleArray<
      typename MakeVisitationMatrix<ReturnType, FunctionObject, EndIndices,
                                    index_sequence<>>::ResultType,
      sizeof...(CurrIndices)>;

  static constexpr ResultType Run() {
    return {{MakeVisitationMatrix<
        ReturnType, FunctionObject, EndIndices,
        AppendToIndexSequenceT<BoundIndices, CurrIndices>>::Run()...}};
  }
};

template <class ReturnType, class FunctionObject, std::size_t HeadEndIndex,
          std::size_t... TailEndIndices, std::size_t... BoundIndices>
struct MakeVisitationMatrix<ReturnType, FunctionObject,
                            index_sequence<HeadEndIndex, TailEndIndices...>,
                            index_sequence<BoundIndices...>>
    : MakeVisitationMatrixImpl<ReturnType, FunctionObject,
                               index_sequence<TailEndIndices...>,
                               absl::make_index_sequence<HeadEndIndex>,
                               index_sequence<BoundIndices...>> {};

struct UnreachableSwitchCase {
  template <class Op>
  [[noreturn]] static VisitIndicesResultT<Op, std::size_t> Run(
      Op&& /*ignored*/) {
#if ABSL_HAVE_BUILTIN(__builtin_unreachable) || \
    (defined(__GNUC__) && !defined(__clang__))
    __builtin_unreachable();
#elif defined(_MSC_VER)
    __assume(false);
#else
    // Try to use assert of false being identified as an unreachable intrinsic.
    // NOTE: We use assert directly to increase chances of exploiting an assume
    //       intrinsic.
    assert(false);  // NOLINT

    // Hack to silence potential no return warning -- cause an infinite loop.
    return Run(absl::forward<Op>(op));
#endif  // Checks for __builtin_unreachable
  }
};

template <class Op, std::size_t I>
struct ReachableSwitchCase {
  static VisitIndicesResultT<Op, std::size_t> Run(Op&& op) {
    return absl::base_internal::Invoke(absl::forward<Op>(op), SizeT<I>());
  }
};

// The number 33 is just a guess at a reasonable maximum to our switch. It is
// not based on any analysis. The reason it is a power of 2 plus 1 instead of a
// power of 2 is because the number was picked to correspond to a power of 2
// amount of "normal" alternatives, plus one for the possibility of the user
// providing "monostate" in addition to the more natural alternatives.
ABSL_INTERNAL_INLINE_CONSTEXPR(std::size_t, MaxUnrolledVisitCases, 33);

// Note: The default-definition is for unreachable cases.
template <bool IsReachable>
struct PickCaseImpl {
  template <class Op, std::size_t I>
  using Apply = UnreachableSwitchCase;
};

template <>
struct PickCaseImpl</*IsReachable =*/true> {
  template <class Op, std::size_t I>
  using Apply = ReachableSwitchCase<Op, I>;
};

// Note: This form of dance with template aliases is to make sure that we
//       instantiate a number of templates proportional to the number of variant
//       alternatives rather than a number of templates proportional to our
//       maximum unrolled amount of visitation cases (aliases are effectively
//       "free" whereas other template instantiations are costly).
template <class Op, std::size_t I, std::size_t EndIndex>
using PickCase = typename PickCaseImpl<(I < EndIndex)>::template Apply<Op, I>;

template <class ReturnType>
[[noreturn]] ReturnType TypedThrowBadVariantAccess() {
  absl::variant_internal::ThrowBadVariantAccess();
}

// Given N variant sizes, determine the number of cases there would need to be
// in a single switch-statement that would cover every possibility in the
// corresponding N-ary visit operation.
template <std::size_t... NumAlternatives>
struct NumCasesOfSwitch;

template <std::size_t HeadNumAlternatives, std::size_t... TailNumAlternatives>
struct NumCasesOfSwitch<HeadNumAlternatives, TailNumAlternatives...> {
  static constexpr std::size_t value =
      (HeadNumAlternatives + 1) *
      NumCasesOfSwitch<TailNumAlternatives...>::value;
};

template <>
struct NumCasesOfSwitch<> {
  static constexpr std::size_t value = 1;
};

// A switch statement optimizes better than the table of function pointers.
template <std::size_t EndIndex>
struct VisitIndicesSwitch {
  static_assert(EndIndex <= MaxUnrolledVisitCases,
                "Maximum unrolled switch size exceeded.");

  template <class Op>
  static VisitIndicesResultT<Op, std::size_t> Run(Op&& op, std::size_t i) {
    switch (i) {
      case 0:
        return PickCase<Op, 0, EndIndex>::Run(absl::forward<Op>(op));
      case 1:
        return PickCase<Op, 1, EndIndex>::Run(absl::forward<Op>(op));
      case 2:
        return PickCase<Op, 2, EndIndex>::Run(absl::forward<Op>(op));
      case 3:
        return PickCase<Op, 3, EndIndex>::Run(absl::forward<Op>(op));
      case 4:
        return PickCase<Op, 4, EndIndex>::Run(absl::forward<Op>(op));
      case 5:
        return PickCase<Op, 5, EndIndex>::Run(absl::forward<Op>(op));
      case 6:
        return PickCase<Op, 6, EndIndex>::Run(absl::forward<Op>(op));
      case 7:
        return PickCase<Op, 7, EndIndex>::Run(absl::forward<Op>(op));
      case 8:
        return PickCase<Op, 8, EndIndex>::Run(absl::forward<Op>(op));
      case 9:
        return PickCase<Op, 9, EndIndex>::Run(absl::forward<Op>(op));
      case 10:
        return PickCase<Op, 10, EndIndex>::Run(absl::forward<Op>(op));
      case 11:
        return PickCase<Op, 11, EndIndex>::Run(absl::forward<Op>(op));
      case 12:
        return PickCase<Op, 12, EndIndex>::Run(absl::forward<Op>(op));
      case 13:
        return PickCase<Op, 13, EndIndex>::Run(absl::forward<Op>(op));
      case 14:
        return PickCase<Op, 14, EndIndex>::Run(absl::forward<Op>(op));
      case 15:
        return PickCase<Op, 15, EndIndex>::Run(absl::forward<Op>(op));
      case 16:
        return PickCase<Op, 16, EndIndex>::Run(absl::forward<Op>(op));
      case 17:
        return PickCase<Op, 17, EndIndex>::Run(absl::forward<Op>(op));
      case 18:
        return PickCase<Op, 18, EndIndex>::Run(absl::forward<Op>(op));
      case 19:
        return PickCase<Op, 19, EndIndex>::Run(absl::forward<Op>(op));
      case 20:
        return PickCase<Op, 20, EndIndex>::Run(absl::forward<Op>(op));
      case 21:
        return PickCase<Op, 21, EndIndex>::Run(absl::forward<Op>(op));
      case 22:
        return PickCase<Op, 22, EndIndex>::Run(absl::forward<Op>(op));
      case 23:
        return PickCase<Op, 23, EndIndex>::Run(absl::forward<Op>(op));
      case 24:
        return PickCase<Op, 24, EndIndex>::Run(absl::forward<Op>(op));
      case 25:
        return PickCase<Op, 25, EndIndex>::Run(absl::forward<Op>(op));
      case 26:
        return PickCase<Op, 26, EndIndex>::Run(absl::forward<Op>(op));
      case 27:
        return PickCase<Op, 27, EndIndex>::Run(absl::forward<Op>(op));
      case 28:
        return PickCase<Op, 28, EndIndex>::Run(absl::forward<Op>(op));
      case 29:
        return PickCase<Op, 29, EndIndex>::Run(absl::forward<Op>(op));
      case 30:
        return PickCase<Op, 30, EndIndex>::Run(absl::forward<Op>(op));
      case 31:
        return PickCase<Op, 31, EndIndex>::Run(absl::forward<Op>(op));
      case 32:
        return PickCase<Op, 32, EndIndex>::Run(absl::forward<Op>(op));
      default:
        ABSL_ASSERT(i == variant_npos);
        return absl::base_internal::Invoke(absl::forward<Op>(op), NPos());
    }
  }
};

template <std::size_t... EndIndices>
struct VisitIndicesFallback {
  template <class Op, class... SizeT>
  static VisitIndicesResultT<Op, SizeT...> Run(Op&& op, SizeT... indices) {
    return AccessSimpleArray(
        MakeVisitationMatrix<VisitIndicesResultT<Op, SizeT...>, Op,
                             index_sequence<(EndIndices + 1)...>,
                             index_sequence<>>::Run(),
        (indices + 1)...)(absl::forward<Op>(op));
  }
};

// Take an N-dimensional series of indices and convert them into a single index
// without loss of information. The purpose of this is to be able to convert an
// N-ary visit operation into a single switch statement.
template <std::size_t...>
struct FlattenIndices;

template <std::size_t HeadSize, std::size_t... TailSize>
struct FlattenIndices<HeadSize, TailSize...> {
  template<class... SizeType>
  static constexpr std::size_t Run(std::size_t head, SizeType... tail) {
    return head + HeadSize * FlattenIndices<TailSize...>::Run(tail...);
  }
};

template <>
struct FlattenIndices<> {
  static constexpr std::size_t Run() { return 0; }
};

// Take a single "flattened" index (flattened by FlattenIndices) and determine
// the value of the index of one of the logically represented dimensions.
template <std::size_t I, std::size_t IndexToGet, std::size_t HeadSize,
          std::size_t... TailSize>
struct UnflattenIndex {
  static constexpr std::size_t value =
      UnflattenIndex<I / HeadSize, IndexToGet - 1, TailSize...>::value;
};

template <std::size_t I, std::size_t HeadSize, std::size_t... TailSize>
struct UnflattenIndex<I, 0, HeadSize, TailSize...> {
  static constexpr std::size_t value = (I % HeadSize);
};

// The backend for converting an N-ary visit operation into a unary visit.
template <class IndexSequence, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl;

template <std::size_t... N, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl<absl::index_sequence<N...>, EndIndices...> {
  // A type that can take an N-ary function object and converts it to a unary
  // function object that takes a single, flattened index, and "unflattens" it
  // into its individual dimensions when forwarding to the wrapped object.
  template <class Op>
  struct FlattenedOp {
    template <std::size_t I>
    VisitIndicesResultT<Op, decltype(EndIndices)...> operator()(
        SizeT<I> /*index*/) && {
      return base_internal::Invoke(
          absl::forward<Op>(op),
          SizeT<UnflattenIndex<I, N, (EndIndices + 1)...>::value -
                std::size_t{1}>()...);
    }

    Op&& op;
  };

  template <class Op, class... SizeType>
  static VisitIndicesResultT<Op, decltype(EndIndices)...> Run(
      Op&& op, SizeType... i) {
    return VisitIndicesSwitch<NumCasesOfSwitch<EndIndices...>::value>::Run(
        FlattenedOp<Op>{absl::forward<Op>(op)},
        FlattenIndices<(EndIndices + std::size_t{1})...>::Run(
            (i + std::size_t{1})...));
  }
};

template <std::size_t... EndIndices>
struct VisitIndicesVariadic
    : VisitIndicesVariadicImpl<absl::make_index_sequence<sizeof...(EndIndices)>,
                               EndIndices...> {};

// This implementation will flatten N-ary visit operations into a single switch
// statement when the number of cases would be less than our maximum specified
// switch-statement size.
// TODO(calabrese)
//   Based on benchmarks, determine whether the function table approach actually
//   does optimize better than a chain of switch statements and possibly update
//   the implementation accordingly. Also consider increasing the maximum switch
//   size.
template <std::size_t... EndIndices>
struct VisitIndices
    : absl::conditional_t<(NumCasesOfSwitch<EndIndices...>::value <=
                           MaxUnrolledVisitCases),
                          VisitIndicesVariadic<EndIndices...>,
                          VisitIndicesFallback<EndIndices...>> {};

template <std::size_t EndIndex>
struct VisitIndices<EndIndex>
    : absl::conditional_t<(EndIndex <= MaxUnrolledVisitCases),
                          VisitIndicesSwitch<EndIndex>,
                          VisitIndicesFallback<EndIndex>> {};

// Suppress bogus warning on MSVC: MSVC complains that the `reinterpret_cast`
// below is returning the address of a temporary or local object.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4172)
#endif  // _MSC_VER

// TODO(calabrese) std::launder
// TODO(calabrese) constexpr
// NOTE: DO NOT REMOVE the `inline` keyword as it is necessary to work around a
// MSVC bug. See https://github.com/abseil/abseil-cpp/issues/129 for details.
template <class Self, std::size_t I>
inline VariantAccessResult<I, Self> AccessUnion(Self&& self, SizeT<I> /*i*/) {
  return reinterpret_cast<VariantAccessResult<I, Self>>(self);
}

#ifdef _MSC_VER
#pragma warning(pop)
#endif  // _MSC_VER

template <class T>
void DeducedDestroy(T& self) {  // NOLINT
  self.~T();
}

// NOTE: This type exists as a single entity for variant and its bases to
// befriend. It contains helper functionality that manipulates the state of the
// variant, such as the implementation of things like assignment and emplace
// operations.
struct VariantCoreAccess {
  template <class VariantType>
  static typename VariantType::Variant& Derived(VariantType& self) {  // NOLINT
    return static_cast<typename VariantType::Variant&>(self);
  }

  template <class VariantType>
  static const typename VariantType::Variant& Derived(
      const VariantType& self) {  // NOLINT
    return static_cast<const typename VariantType::Variant&>(self);
  }

  template <class VariantType>
  static void Destroy(VariantType& self) {  // NOLINT
    Derived(self).destroy();
    self.index_ = absl::variant_npos;
  }

  template <class Variant>
  static void SetIndex(Variant& self, std::size_t i) {  // NOLINT
    self.index_ = i;
  }

  template <class Variant>
  static void InitFrom(Variant& self, Variant&& other) {  // NOLINT
    VisitIndices<absl::variant_size<Variant>::value>::Run(
        InitFromVisitor<Variant, Variant&&>{&self,
                                            std::forward<Variant>(other)},
        other.index());
    self.index_ = other.index();
  }

  // Access a variant alternative, assuming the index is correct.
  template <std::size_t I, class Variant>
  static VariantAccessResult<I, Variant> Access(Variant&& self) {
    // This cast instead of invocation of AccessUnion with an rvalue is a
    // workaround for msvc. Without this there is a runtime failure when dealing
    // with rvalues.
    // TODO(calabrese) Reduce test case and find a simpler workaround.
    return static_cast<VariantAccessResult<I, Variant>>(
        variant_internal::AccessUnion(self.state_, SizeT<I>()));
  }

  // Access a variant alternative, throwing if the index is incorrect.
  template <std::size_t I, class Variant>
  static VariantAccessResult<I, Variant> CheckedAccess(Variant&& self) {
    if (ABSL_PREDICT_FALSE(self.index_ != I)) {
      TypedThrowBadVariantAccess<VariantAccessResult<I, Variant>>();
    }

    return Access<I>(absl::forward<Variant>(self));
  }

  // The implementation of the move-assignment operation for a variant.
  template <class VType>
  struct MoveAssignVisitor {
    using DerivedType = typename VType::Variant;
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      if (left->index_ == NewIndex) {
        Access<NewIndex>(*left) = std::move(Access<NewIndex>(*right));
      } else {
        Derived(*left).template emplace<NewIndex>(
            std::move(Access<NewIndex>(*right)));
      }
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      Destroy(*left);
    }

    VType* left;
    VType* right;
  };

  template <class VType>
  static MoveAssignVisitor<VType> MakeMoveAssignVisitor(VType* left,
                                                        VType* other) {
    return {left, other};
  }

  // The implementation of the assignment operation for a variant.
  template <class VType>
  struct CopyAssignVisitor {
    using DerivedType = typename VType::Variant;
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      using New =
          typename absl::variant_alternative<NewIndex, DerivedType>::type;

      if (left->index_ == NewIndex) {
        Access<NewIndex>(*left) = Access<NewIndex>(*right);
      } else if (std::is_nothrow_copy_constructible<New>::value ||
                 !std::is_nothrow_move_constructible<New>::value) {
        Derived(*left).template emplace<NewIndex>(Access<NewIndex>(*right));
      } else {
        Derived(*left) = DerivedType(Derived(*right));
      }
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      Destroy(*left);
    }

    VType* left;
    const VType* right;
  };

  template <class VType>
  static CopyAssignVisitor<VType> MakeCopyAssignVisitor(VType* left,
                                                        const VType& other) {
    return {left, &other};
  }

  // The implementation of conversion-assignment operations for variant.
  template <class Left, class QualifiedNew>
  struct ConversionAssignVisitor {
    using NewIndex =
        variant_internal::IndexOfConstructedType<Left, QualifiedNew>;

    void operator()(SizeT<NewIndex::value> /*old_i*/
                    ) const {
      Access<NewIndex::value>(*left) = absl::forward<QualifiedNew>(other);
    }

    template <std::size_t OldIndex>
    void operator()(SizeT<OldIndex> /*old_i*/
                    ) const {
      using New =
          typename absl::variant_alternative<NewIndex::value, Left>::type;
      if (std::is_nothrow_constructible<New, QualifiedNew>::value ||
          !std::is_nothrow_move_constructible<New>::value) {
        left->template emplace<NewIndex::value>(
            absl::forward<QualifiedNew>(other));
      } else {
        // the standard says "equivalent to
        // operator=(variant(std::forward<T>(t)))", but we use `emplace` here
        // because the variant's move assignment operator could be deleted.
        left->template emplace<NewIndex::value>(
            New(absl::forward<QualifiedNew>(other)));
      }
    }

    Left* left;
    QualifiedNew&& other;
  };

  template <class Left, class QualifiedNew>
  static ConversionAssignVisitor<Left, QualifiedNew>
  MakeConversionAssignVisitor(Left* left, QualifiedNew&& qual) {
    return {left, absl::forward<QualifiedNew>(qual)};
  }

  // Backend for operations for `emplace()` which destructs `*self` then
  // construct a new alternative with `Args...`.
  template <std::size_t NewIndex, class Self, class... Args>
  static typename absl::variant_alternative<NewIndex, Self>::type& Replace(
      Self* self, Args&&... args) {
    Destroy(*self);
    using New = typename absl::variant_alternative<NewIndex, Self>::type;
    New* const result = ::new (static_cast<void*>(&self->state_))
        New(absl::forward<Args>(args)...);
    self->index_ = NewIndex;
    return *result;
  }

  template <class LeftVariant, class QualifiedRightVariant>
  struct InitFromVisitor {
    template <std::size_t NewIndex>
    void operator()(SizeT<NewIndex> /*new_i*/) const {
      using Alternative =
          typename variant_alternative<NewIndex, LeftVariant>::type;
      ::new (static_cast<void*>(&left->state_)) Alternative(
          Access<NewIndex>(std::forward<QualifiedRightVariant>(right)));
    }

    void operator()(SizeT<absl::variant_npos> /*new_i*/) const {
      // This space intentionally left blank.
    }
    LeftVariant* left;
    QualifiedRightVariant&& right;
  };
};

template <class Expected, class... T>
struct IndexOfImpl;

template <class Expected>
struct IndexOfImpl<Expected> {
  using IndexFromEnd = SizeT<0>;
  using MatchedIndexFromEnd = IndexFromEnd;
  using MultipleMatches = std::false_type;
};

template <class Expected, class Head, class... Tail>
struct IndexOfImpl<Expected, Head, Tail...> : IndexOfImpl<Expected, Tail...> {
  using IndexFromEnd =
      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
};

template <class Expected, class... Tail>
struct IndexOfImpl<Expected, Expected, Tail...>
    : IndexOfImpl<Expected, Tail...> {
  using IndexFromEnd =
      SizeT<IndexOfImpl<Expected, Tail...>::IndexFromEnd::value + 1>;
  using MatchedIndexFromEnd = IndexFromEnd;
  using MultipleMatches = std::integral_constant<
      bool, IndexOfImpl<Expected, Tail...>::MatchedIndexFromEnd::value != 0>;
};

template <class Expected, class... Types>
struct IndexOfMeta {
  using Results = IndexOfImpl<Expected, Types...>;
  static_assert(!Results::MultipleMatches::value,
                "Attempted to access a variant by specifying a type that "
                "matches more than one alternative.");
  static_assert(Results::MatchedIndexFromEnd::value != 0,
                "Attempted to access a variant by specifying a type that does "
                "not match any alternative.");
  using type = SizeT<sizeof...(Types) - Results::MatchedIndexFromEnd::value>;
};

template <class Expected, class... Types>
using IndexOf = typename IndexOfMeta<Expected, Types...>::type;

template <class Variant, class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl;

// Terminating case encountered once we've checked all of the alternatives
template <class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<>, T, CurrIndex> : SizeT<CurrIndex> {};

// Case where T is not Head
template <class Head, class... Tail, class T, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<Head, Tail...>, T, CurrIndex>
    : UnambiguousIndexOfImpl<variant<Tail...>, T, CurrIndex + 1>::type {};

// Case where T is Head
template <class Head, class... Tail, std::size_t CurrIndex>
struct UnambiguousIndexOfImpl<variant<Head, Tail...>, Head, CurrIndex>
    : SizeT<UnambiguousIndexOfImpl<variant<Tail...>, Head, 0>::value ==
                    sizeof...(Tail)
                ? CurrIndex
                : CurrIndex + sizeof...(Tail) + 1> {};

template <class Variant, class T>
struct UnambiguousIndexOf;

struct NoMatch {
  struct type {};
};

template <class... Alts, class T>
struct UnambiguousIndexOf<variant<Alts...>, T>
    : std::conditional<UnambiguousIndexOfImpl<variant<Alts...>, T, 0>::value !=
                           sizeof...(Alts),
                       UnambiguousIndexOfImpl<variant<Alts...>, T, 0>,
                       NoMatch>::type::type {};

template <class T, std::size_t /*Dummy*/>
using UnambiguousTypeOfImpl = T;

template <class Variant, class T>
using UnambiguousTypeOfT =
    UnambiguousTypeOfImpl<T, UnambiguousIndexOf<Variant, T>::value>;

template <class H, class... T>
class VariantStateBase;

// This is an implementation of the "imaginary function" that is described in
// [variant.ctor]
// It is used in order to determine which alternative to construct during
// initialization from some type T.
template <class Variant, std::size_t I = 0>
struct ImaginaryFun;

template <std::size_t I>
struct ImaginaryFun<variant<>, I> {
  static void Run() = delete;
};

template <class H, class... T, std::size_t I>
struct ImaginaryFun<variant<H, T...>, I> : ImaginaryFun<variant<T...>, I + 1> {
  using ImaginaryFun<variant<T...>, I + 1>::Run;

  // NOTE: const& and && are used instead of by-value due to lack of guaranteed
  // move elision of C++17. This may have other minor differences, but tests
  // pass.
  static SizeT<I> Run(const H&, SizeT<I>);
  static SizeT<I> Run(H&&, SizeT<I>);
};

// The following metafunctions are used in constructor and assignment
// constraints.
template <class Self, class T>
struct IsNeitherSelfNorInPlace : std::true_type {};

template <class Self>
struct IsNeitherSelfNorInPlace<Self, Self> : std::false_type {};

template <class Self, class T>
struct IsNeitherSelfNorInPlace<Self, in_place_type_t<T>> : std::false_type {};

template <class Self, std::size_t I>
struct IsNeitherSelfNorInPlace<Self, in_place_index_t<I>> : std::false_type {};

template <class Variant, class T, class = void>
struct ConversionIsPossibleImpl : std::false_type {};

template <class Variant, class T>
struct ConversionIsPossibleImpl<
    Variant, T,
    void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>(), {}))>>
    : std::true_type {};

template <class Variant, class T>
struct ConversionIsPossible : ConversionIsPossibleImpl<Variant, T>::type {};

template <class Variant, class T>
struct IndexOfConstructedType<
    Variant, T,
    void_t<decltype(ImaginaryFun<Variant>::Run(std::declval<T>(), {}))>>
    : decltype(ImaginaryFun<Variant>::Run(std::declval<T>(), {})) {};

template <std::size_t... Is>
struct ContainsVariantNPos
    : absl::negation<std::is_same<  // NOLINT
          absl::integer_sequence<bool, 0 <= Is...>,
          absl::integer_sequence<bool, Is != absl::variant_npos...>>> {};

template <class Op, class... QualifiedVariants>
using RawVisitResult =
    absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;

// NOTE: The spec requires that all return-paths yield the same type and is not
// SFINAE-friendly, so we can deduce the return type by examining the first
// result. If it's not callable, then we get an error, but are compliant and
// fast to compile.
// TODO(calabrese) Possibly rewrite in a way that yields better compile errors
// at the cost of longer compile-times.
template <class Op, class... QualifiedVariants>
struct VisitResultImpl {
  using type =
      absl::result_of_t<Op(VariantAccessResult<0, QualifiedVariants>...)>;
};

// Done in two steps intentionally so that we don't cause substitution to fail.
template <class Op, class... QualifiedVariants>
using VisitResult = typename VisitResultImpl<Op, QualifiedVariants...>::type;

template <class Op, class... QualifiedVariants>
struct PerformVisitation {
  using ReturnType = VisitResult<Op, QualifiedVariants...>;

  template <std::size_t... Is>
  constexpr ReturnType operator()(SizeT<Is>... indices) const {
    return Run(typename ContainsVariantNPos<Is...>::type{},
               absl::index_sequence_for<QualifiedVariants...>(), indices...);
  }

  template <std::size_t... TupIs, std::size_t... Is>
  constexpr ReturnType Run(std::false_type /*has_valueless*/,
                           index_sequence<TupIs...>, SizeT<Is>...) const {
    static_assert(
        std::is_same<ReturnType,
                     absl::result_of_t<Op(VariantAccessResult<
                                          Is, QualifiedVariants>...)>>::value,
        "All visitation overloads must have the same return type.");
    return absl::base_internal::Invoke(
        absl::forward<Op>(op),
        VariantCoreAccess::Access<Is>(
            absl::forward<QualifiedVariants>(std::get<TupIs>(variant_tup)))...);
  }

  template <std::size_t... TupIs, std::size_t... Is>
  [[noreturn]] ReturnType Run(std::true_type /*has_valueless*/,
                              index_sequence<TupIs...>, SizeT<Is>...) const {
    absl::variant_internal::ThrowBadVariantAccess();
  }

  // TODO(calabrese) Avoid using a tuple, which causes lots of instantiations
  // Attempts using lambda variadic captures fail on current GCC.
  std::tuple<QualifiedVariants&&...> variant_tup;
  Op&& op;
};

template <class... T>
union Union;

// We want to allow for variant<> to be trivial. For that, we need the default
// constructor to be trivial, which means we can't define it ourselves.
// Instead, we use a non-default constructor that takes NoopConstructorTag
// that doesn't affect the triviality of the types.
struct NoopConstructorTag {};

template <std::size_t I>
struct EmplaceTag {};

template <>
union Union<> {
  constexpr explicit Union(NoopConstructorTag) noexcept {}
};

// Suppress bogus warning on MSVC: MSVC complains that Union<T...> has a defined
// deleted destructor from the `std::is_destructible` check below.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4624)
#endif  // _MSC_VER

template <class Head, class... Tail>
union Union<Head, Tail...> {
  using TailUnion = Union<Tail...>;

  explicit constexpr Union(NoopConstructorTag /*tag*/) noexcept
      : tail(NoopConstructorTag()) {}

  template <class... P>
  explicit constexpr Union(EmplaceTag<0>, P&&... args)
      : head(absl::forward<P>(args)...) {}

  template <std::size_t I, class... P>
  explicit constexpr Union(EmplaceTag<I>, P&&... args)
      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}

  Head head;
  TailUnion tail;
};

#ifdef _MSC_VER
#pragma warning(pop)
#endif  // _MSC_VER

// TODO(calabrese) Just contain a Union in this union (certain configs fail).
template <class... T>
union DestructibleUnionImpl;

template <>
union DestructibleUnionImpl<> {
  constexpr explicit DestructibleUnionImpl(NoopConstructorTag) noexcept {}
};

template <class Head, class... Tail>
union DestructibleUnionImpl<Head, Tail...> {
  using TailUnion = DestructibleUnionImpl<Tail...>;

  explicit constexpr DestructibleUnionImpl(NoopConstructorTag /*tag*/) noexcept
      : tail(NoopConstructorTag()) {}

  template <class... P>
  explicit constexpr DestructibleUnionImpl(EmplaceTag<0>, P&&... args)
      : head(absl::forward<P>(args)...) {}

  template <std::size_t I, class... P>
  explicit constexpr DestructibleUnionImpl(EmplaceTag<I>, P&&... args)
      : tail(EmplaceTag<I - 1>{}, absl::forward<P>(args)...) {}

  ~DestructibleUnionImpl() {}

  Head head;
  TailUnion tail;
};

// This union type is destructible even if one or more T are not trivially
// destructible. In the case that all T are trivially destructible, then so is
// this resultant type.
template <class... T>
using DestructibleUnion =
    absl::conditional_t<std::is_destructible<Union<T...>>::value, Union<T...>,
                        DestructibleUnionImpl<T...>>;

// Deepest base, containing the actual union and the discriminator
template <class H, class... T>
class VariantStateBase {
 protected:
  using Variant = variant<H, T...>;

  template <class LazyH = H,
            class ConstructibleH = absl::enable_if_t<
                std::is_default_constructible<LazyH>::value, LazyH>>
  constexpr VariantStateBase() noexcept(
      std::is_nothrow_default_constructible<ConstructibleH>::value)
      : state_(EmplaceTag<0>()), index_(0) {}

  template <std::size_t I, class... P>
  explicit constexpr VariantStateBase(EmplaceTag<I> tag, P&&... args)
      : state_(tag, absl::forward<P>(args)...), index_(I) {}

  explicit constexpr VariantStateBase(NoopConstructorTag)
      : state_(NoopConstructorTag()), index_(variant_npos) {}

  void destroy() {}  // Does nothing (shadowed in child if non-trivial)

  DestructibleUnion<H, T...> state_;
  std::size_t index_;
};

using absl::internal::identity;

// OverloadSet::Overload() is a unary function which is overloaded to
// take any of the element types of the variant, by reference-to-const.
// The return type of the overload on T is identity<T>, so that you
// can statically determine which overload was called.
//
// Overload() is not defined, so it can only be called in unevaluated
// contexts.
template <typename... Ts>
struct OverloadSet;

template <typename T, typename... Ts>
struct OverloadSet<T, Ts...> : OverloadSet<Ts...> {
  using Base = OverloadSet<Ts...>;
  static identity<T> Overload(const T&);
  using Base::Overload;
};

template <>
struct OverloadSet<> {
  // For any case not handled above.
  static void Overload(...);
};

template <class T>
using LessThanResult = decltype(std::declval<T>() < std::declval<T>());

template <class T>
using GreaterThanResult = decltype(std::declval<T>() > std::declval<T>());

template <class T>
using LessThanOrEqualResult = decltype(std::declval<T>() <= std::declval<T>());

template <class T>
using GreaterThanOrEqualResult =
    decltype(std::declval<T>() >= std::declval<T>());

template <class T>
using EqualResult = decltype(std::declval<T>() == std::declval<T>());

template <class T>
using NotEqualResult = decltype(std::declval<T>() != std::declval<T>());

using type_traits_internal::is_detected_convertible;

template <class... T>
using RequireAllHaveEqualT = absl::enable_if_t<
    absl::conjunction<is_detected_convertible<bool, EqualResult, T>...>::value,
    bool>;

template <class... T>
using RequireAllHaveNotEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, NotEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveLessThanT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, LessThanResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveLessThanOrEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, LessThanOrEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveGreaterThanOrEqualT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, GreaterThanOrEqualResult, T>...>::value,
                      bool>;

template <class... T>
using RequireAllHaveGreaterThanT =
    absl::enable_if_t<absl::conjunction<is_detected_convertible<
                          bool, GreaterThanResult, T>...>::value,
                      bool>;

// Helper template containing implementations details of variant that can't go
// in the private section. For convenience, this takes the variant type as a
// single template parameter.
template <typename T>
struct VariantHelper;

template <typename... Ts>
struct VariantHelper<variant<Ts...>> {
  // Type metafunction which returns the element type selected if
  // OverloadSet::Overload() is well-formed when called with argument type U.
  template <typename U>
  using BestMatch = decltype(
      variant_internal::OverloadSet<Ts...>::Overload(std::declval<U>()));

  // Type metafunction which returns true if OverloadSet::Overload() is
  // well-formed when called with argument type U.
  // CanAccept can't be just an alias because there is a MSVC bug on parameter
  // pack expansion involving decltype.
  template <typename U>
  struct CanAccept :
      std::integral_constant<bool, !std::is_void<BestMatch<U>>::value> {};

  // Type metafunction which returns true if Other is an instantiation of
  // variant, and variants's converting constructor from Other will be
  // well-formed. We will use this to remove constructors that would be
  // ill-formed from the overload set.
  template <typename Other>
  struct CanConvertFrom;

  template <typename... Us>
  struct CanConvertFrom<variant<Us...>>
      : public absl::conjunction<CanAccept<Us>...> {};
};

// A type with nontrivial copy ctor and trivial move ctor.
struct TrivialMoveOnly {
  TrivialMoveOnly(TrivialMoveOnly&&) = default;
};

// Trait class to detect whether a type is trivially move constructible.
// A union's defaulted copy/move constructor is deleted if any variant member's
// copy/move constructor is nontrivial.
template <typename T>
struct IsTriviallyMoveConstructible:
  std::is_move_constructible<Union<T, TrivialMoveOnly>> {};

// To guarantee triviality of all special-member functions that can be trivial,
// we use a chain of conditional bases for each one.
// The order of inheritance of bases from child to base are logically:
//
// variant
// VariantCopyAssignBase
// VariantMoveAssignBase
// VariantCopyBase
// VariantMoveBase
// VariantStateBaseDestructor
// VariantStateBase
//
// Note that there is a separate branch at each base that is dependent on
// whether or not that corresponding special-member-function can be trivial in
// the resultant variant type.

template <class... T>
class VariantStateBaseDestructorNontrivial;

template <class... T>
class VariantMoveBaseNontrivial;

template <class... T>
class VariantCopyBaseNontrivial;

template <class... T>
class VariantMoveAssignBaseNontrivial;

template <class... T>
class VariantCopyAssignBaseNontrivial;

// Base that is dependent on whether or not the destructor can be trivial.
template <class... T>
using VariantStateBaseDestructor =
    absl::conditional_t<std::is_destructible<Union<T...>>::value,
                        VariantStateBase<T...>,
                        VariantStateBaseDestructorNontrivial<T...>>;

// Base that is dependent on whether or not the move-constructor can be
// implicitly generated by the compiler (trivial or deleted).
// Previously we were using `std::is_move_constructible<Union<T...>>` to check
// whether all Ts have trivial move constructor, but it ran into a GCC bug:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84866
// So we have to use a different approach (i.e. `HasTrivialMoveConstructor`) to
// work around the bug.
template <class... T>
using VariantMoveBase = absl::conditional_t<
    absl::disjunction<
        absl::negation<absl::conjunction<std::is_move_constructible<T>...>>,
        absl::conjunction<IsTriviallyMoveConstructible<T>...>>::value,
    VariantStateBaseDestructor<T...>, VariantMoveBaseNontrivial<T...>>;

// Base that is dependent on whether or not the copy-constructor can be trivial.
template <class... T>
using VariantCopyBase = absl::conditional_t<
    absl::disjunction<
        absl::negation<absl::conjunction<std::is_copy_constructible<T>...>>,
        std::is_copy_constructible<Union<T...>>>::value,
    VariantMoveBase<T...>, VariantCopyBaseNontrivial<T...>>;

// Base that is dependent on whether or not the move-assign can be trivial.
template <class... T>
using VariantMoveAssignBase = absl::conditional_t<
    absl::disjunction<
        absl::conjunction<absl::is_move_assignable<Union<T...>>,
                          std::is_move_constructible<Union<T...>>,
                          std::is_destructible<Union<T...>>>,
        absl::negation<absl::conjunction<std::is_move_constructible<T>...,
                                         // Note: We're not qualifying this with
                                         // absl:: because it doesn't compile
                                         // under MSVC.
                                         is_move_assignable<T>...>>>::value,
    VariantCopyBase<T...>, VariantMoveAssignBaseNontrivial<T...>>;

// Base that is dependent on whether or not the copy-assign can be trivial.
template <class... T>
using VariantCopyAssignBase = absl::conditional_t<
    absl::disjunction<
        absl::conjunction<absl::is_copy_assignable<Union<T...>>,
                          std::is_copy_constructible<Union<T...>>,
                          std::is_destructible<Union<T...>>>,
        absl::negation<absl::conjunction<std::is_copy_constructible<T>...,
                                         // Note: We're not qualifying this with
                                         // absl:: because it doesn't compile
                                         // under MSVC.
                                         is_copy_assignable<T>...>>>::value,
    VariantMoveAssignBase<T...>, VariantCopyAssignBaseNontrivial<T...>>;

template <class... T>
using VariantBase = VariantCopyAssignBase<T...>;

template <class... T>
class VariantStateBaseDestructorNontrivial : protected VariantStateBase<T...> {
 private:
  using Base = VariantStateBase<T...>;

 protected:
  using Base::Base;

  VariantStateBaseDestructorNontrivial() = default;
  VariantStateBaseDestructorNontrivial(VariantStateBaseDestructorNontrivial&&) =
      default;
  VariantStateBaseDestructorNontrivial(
      const VariantStateBaseDestructorNontrivial&) = default;
  VariantStateBaseDestructorNontrivial& operator=(
      VariantStateBaseDestructorNontrivial&&) = default;
  VariantStateBaseDestructorNontrivial& operator=(
      const VariantStateBaseDestructorNontrivial&) = default;

  struct Destroyer {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      variant_internal::AccessUnion(self->state_, i).~Alternative();
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {
      // This space intentionally left blank
    }

    VariantStateBaseDestructorNontrivial* self;
  };

  void destroy() { VisitIndices<sizeof...(T)>::Run(Destroyer{this}, index_); }

  ~VariantStateBaseDestructorNontrivial() { destroy(); }

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantMoveBaseNontrivial : protected VariantStateBaseDestructor<T...> {
 private:
  using Base = VariantStateBaseDestructor<T...>;

 protected:
  using Base::Base;

  struct Construct {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      ::new (static_cast<void*>(&self->state_)) Alternative(
          variant_internal::AccessUnion(absl::move(other->state_), i));
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {}

    VariantMoveBaseNontrivial* self;
    VariantMoveBaseNontrivial* other;
  };

  VariantMoveBaseNontrivial() = default;
  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial&& other) noexcept(
      absl::conjunction<std::is_nothrow_move_constructible<T>...>::value)
      : Base(NoopConstructorTag()) {
    VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
    index_ = other.index_;
  }

  VariantMoveBaseNontrivial(VariantMoveBaseNontrivial const&) = default;

  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial&&) = default;
  VariantMoveBaseNontrivial& operator=(VariantMoveBaseNontrivial const&) =
      default;

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantCopyBaseNontrivial : protected VariantMoveBase<T...> {
 private:
  using Base = VariantMoveBase<T...>;

 protected:
  using Base::Base;

  VariantCopyBaseNontrivial() = default;
  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial&&) = default;

  struct Construct {
    template <std::size_t I>
    void operator()(SizeT<I> i) const {
      using Alternative =
          typename absl::variant_alternative<I, variant<T...>>::type;
      ::new (static_cast<void*>(&self->state_))
          Alternative(variant_internal::AccessUnion(other->state_, i));
    }

    void operator()(SizeT<absl::variant_npos> /*i*/) const {}

    VariantCopyBaseNontrivial* self;
    const VariantCopyBaseNontrivial* other;
  };

  VariantCopyBaseNontrivial(VariantCopyBaseNontrivial const& other)
      : Base(NoopConstructorTag()) {
    VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
    index_ = other.index_;
  }

  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial&&) = default;
  VariantCopyBaseNontrivial& operator=(VariantCopyBaseNontrivial const&) =
      default;

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantMoveAssignBaseNontrivial : protected VariantCopyBase<T...> {
  friend struct VariantCoreAccess;

 private:
  using Base = VariantCopyBase<T...>;

 protected:
  using Base::Base;

  VariantMoveAssignBaseNontrivial() = default;
  VariantMoveAssignBaseNontrivial(VariantMoveAssignBaseNontrivial&&) = default;
  VariantMoveAssignBaseNontrivial(const VariantMoveAssignBaseNontrivial&) =
      default;
  VariantMoveAssignBaseNontrivial& operator=(
      VariantMoveAssignBaseNontrivial const&) = default;

    VariantMoveAssignBaseNontrivial&
    operator=(VariantMoveAssignBaseNontrivial&& other) noexcept(
        absl::conjunction<std::is_nothrow_move_constructible<T>...,
                          std::is_nothrow_move_assignable<T>...>::value) {
      VisitIndices<sizeof...(T)>::Run(
          VariantCoreAccess::MakeMoveAssignVisitor(this, &other), other.index_);
      return *this;
    }

 protected:
  using Base::index_;
  using Base::state_;
};

template <class... T>
class VariantCopyAssignBaseNontrivial : protected VariantMoveAssignBase<T...> {
  friend struct VariantCoreAccess;

 private:
  using Base = VariantMoveAssignBase<T...>;

 protected:
  using Base::Base;

  VariantCopyAssignBaseNontrivial() = default;
  VariantCopyAssignBaseNontrivial(VariantCopyAssignBaseNontrivial&&) = default;
  VariantCopyAssignBaseNontrivial(const VariantCopyAssignBaseNontrivial&) =
      default;
  VariantCopyAssignBaseNontrivial& operator=(
      VariantCopyAssignBaseNontrivial&&) = default;

    VariantCopyAssignBaseNontrivial& operator=(
        const VariantCopyAssignBaseNontrivial& other) {
      VisitIndices<sizeof...(T)>::Run(
          VariantCoreAccess::MakeCopyAssignVisitor(this, other), other.index_);
      return *this;
    }

 protected:
  using Base::index_;
  using Base::state_;
};

////////////////////////////////////////
// Visitors for Comparison Operations //
////////////////////////////////////////

template <class... Types>
struct EqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) == VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct NotEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) != VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct LessThanOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) < VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct GreaterThanOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return false;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) > VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct LessThanOrEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) <= VariantCoreAccess::Access<I>(*w);
  }
};

template <class... Types>
struct GreaterThanOrEqualsOp {
  const variant<Types...>* v;
  const variant<Types...>* w;

  constexpr bool operator()(SizeT<absl::variant_npos> /*v_i*/) const {
    return true;
  }

  template <std::size_t I>
  constexpr bool operator()(SizeT<I> /*v_i*/) const {
    return VariantCoreAccess::Access<I>(*v) >= VariantCoreAccess::Access<I>(*w);
  }
};

// Precondition: v.index() == w.index();
template <class... Types>
struct SwapSameIndex {
  variant<Types...>* v;
  variant<Types...>* w;
  template <std::size_t I>
  void operator()(SizeT<I>) const {
    type_traits_internal::Swap(VariantCoreAccess::Access<I>(*v),
                               VariantCoreAccess::Access<I>(*w));
  }

  void operator()(SizeT<variant_npos>) const {}
};

// TODO(calabrese) do this from a different namespace for proper adl usage
template <class... Types>
struct Swap {
  variant<Types...>* v;
  variant<Types...>* w;

  void generic_swap() const {
    variant<Types...> tmp(std::move(*w));
    VariantCoreAccess::Destroy(*w);
    VariantCoreAccess::InitFrom(*w, std::move(*v));
    VariantCoreAccess::Destroy(*v);
    VariantCoreAccess::InitFrom(*v, std::move(tmp));
  }

  void operator()(SizeT<absl::variant_npos> /*w_i*/) const {
    if (!v->valueless_by_exception()) {
      generic_swap();
    }
  }

  template <std::size_t Wi>
  void operator()(SizeT<Wi> /*w_i*/) {
    if (v->index() == Wi) {
      VisitIndices<sizeof...(Types)>::Run(SwapSameIndex<Types...>{v, w}, Wi);
    } else {
      generic_swap();
    }
  }
};

template <typename Variant, typename = void, typename... Ts>
struct VariantHashBase {
  VariantHashBase() = delete;
  VariantHashBase(const VariantHashBase&) = delete;
  VariantHashBase(VariantHashBase&&) = delete;
  VariantHashBase& operator=(const VariantHashBase&) = delete;
  VariantHashBase& operator=(VariantHashBase&&) = delete;
};

struct VariantHashVisitor {
  template <typename T>
  size_t operator()(const T& t) {
    return std::hash<T>{}(t);
  }
};

template <typename Variant, typename... Ts>
struct VariantHashBase<Variant,
                       absl::enable_if_t<absl::conjunction<
                           type_traits_internal::IsHashable<Ts>...>::value>,
                       Ts...> {
  using argument_type = Variant;
  using result_type = size_t;
  size_t operator()(const Variant& var) const {
    type_traits_internal::AssertHashEnabled<Ts...>();
    if (var.valueless_by_exception()) {
      return 239799884;
    }
    size_t result = VisitIndices<variant_size<Variant>::value>::Run(
        PerformVisitation<VariantHashVisitor, const Variant&>{
            std::forward_as_tuple(var), VariantHashVisitor{}},
        var.index());
    // Combine the index and the hash result in order to distinguish
    // std::variant<int, int> holding the same value as different alternative.
    return result ^ var.index();
  }
};

}  // namespace variant_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // !defined(ABSL_USES_STD_VARIANT)
#endif  // ABSL_TYPES_variant_internal_H_