arg.h 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_

#include <string.h>
#include <wchar.h>

#include <cstdio>
#include <iomanip>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>

#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

class Cord;
class FormatCountCapture;
class FormatSink;

namespace str_format_internal {

template <typename T, typename = void>
struct HasUserDefinedConvert : std::false_type {};

template <typename T>
struct HasUserDefinedConvert<
    T, void_t<decltype(AbslFormatConvert(
           std::declval<const T&>(), std::declval<ConversionSpec>(),
           std::declval<FormatSink*>()))>> : std::true_type {};

template <typename T>
class StreamedWrapper;

// If 'v' can be converted (in the printf sense) according to 'conv',
// then convert it, appending to `sink` and return `true`.
// Otherwise fail and return `false`.

// Raw pointers.
struct VoidPtr {
  VoidPtr() = default;
  template <typename T,
            decltype(reinterpret_cast<uintptr_t>(std::declval<T*>())) = 0>
  VoidPtr(T* ptr)  // NOLINT
      : value(ptr ? reinterpret_cast<uintptr_t>(ptr) : 0) {}
  uintptr_t value;
};
ConvertResult<Conv::p> FormatConvertImpl(VoidPtr v, ConversionSpec conv,
                                         FormatSinkImpl* sink);

// Strings.
ConvertResult<Conv::s> FormatConvertImpl(const std::string& v,
                                         ConversionSpec conv,
                                         FormatSinkImpl* sink);
ConvertResult<Conv::s> FormatConvertImpl(string_view v, ConversionSpec conv,
                                         FormatSinkImpl* sink);
ConvertResult<Conv::s | Conv::p> FormatConvertImpl(const char* v,
                                                   ConversionSpec conv,
                                                   FormatSinkImpl* sink);
template <class AbslCord,
          typename std::enable_if<
              std::is_same<AbslCord, absl::Cord>::value>::type* = nullptr>
ConvertResult<Conv::s> FormatConvertImpl(const AbslCord& value,
                                         ConversionSpec conv,
                                         FormatSinkImpl* sink) {
  if (conv.conv() != ConversionChar::s) return {false};

  bool is_left = conv.flags().left;
  size_t space_remaining = 0;

  int width = conv.width();
  if (width >= 0) space_remaining = width;

  size_t to_write = value.size();

  int precision = conv.precision();
  if (precision >= 0)
    to_write = (std::min)(to_write, static_cast<size_t>(precision));

  space_remaining = Excess(to_write, space_remaining);

  if (space_remaining > 0 && !is_left) sink->Append(space_remaining, ' ');

  for (string_view piece : value.Chunks()) {
    if (piece.size() > to_write) {
      piece.remove_suffix(piece.size() - to_write);
      to_write = 0;
    } else {
      to_write -= piece.size();
    }
    sink->Append(piece);
    if (to_write == 0) {
      break;
    }
  }

  if (space_remaining > 0 && is_left) sink->Append(space_remaining, ' ');
  return {true};
}

using IntegralConvertResult =
    ConvertResult<Conv::c | Conv::numeric | Conv::star>;
using FloatingConvertResult = ConvertResult<Conv::floating>;

// Floats.
FloatingConvertResult FormatConvertImpl(float v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(double v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(long double v, ConversionSpec conv,
                                        FormatSinkImpl* sink);

// Chars.
IntegralConvertResult FormatConvertImpl(char v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(signed char v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned char v, ConversionSpec conv,
                                        FormatSinkImpl* sink);

// Ints.
IntegralConvertResult FormatConvertImpl(short v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned short v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long long v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long long v,  // NOLINT
                                        ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int128 v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(uint128 v, ConversionSpec conv,
                                        FormatSinkImpl* sink);
template <typename T, enable_if_t<std::is_same<T, bool>::value, int> = 0>
IntegralConvertResult FormatConvertImpl(T v, ConversionSpec conv,
                                        FormatSinkImpl* sink) {
  return FormatConvertImpl(static_cast<int>(v), conv, sink);
}

// We provide this function to help the checker, but it is never defined.
// FormatArgImpl will use the underlying Convert functions instead.
template <typename T>
typename std::enable_if<std::is_enum<T>::value &&
                            !HasUserDefinedConvert<T>::value,
                        IntegralConvertResult>::type
FormatConvertImpl(T v, ConversionSpec conv, FormatSinkImpl* sink);

template <typename T>
ConvertResult<Conv::s> FormatConvertImpl(const StreamedWrapper<T>& v,
                                         ConversionSpec conv,
                                         FormatSinkImpl* out) {
  std::ostringstream oss;
  oss << v.v_;
  if (!oss) return {false};
  return str_format_internal::FormatConvertImpl(oss.str(), conv, out);
}

// Use templates and dependent types to delay evaluation of the function
// until after FormatCountCapture is fully defined.
struct FormatCountCaptureHelper {
  template <class T = int>
  static ConvertResult<Conv::n> ConvertHelper(const FormatCountCapture& v,
                                              ConversionSpec conv,
                                              FormatSinkImpl* sink) {
    const absl::enable_if_t<sizeof(T) != 0, FormatCountCapture>& v2 = v;

    if (conv.conv() != str_format_internal::ConversionChar::n) return {false};
    *v2.p_ = static_cast<int>(sink->size());
    return {true};
  }
};

template <class T = int>
ConvertResult<Conv::n> FormatConvertImpl(const FormatCountCapture& v,
                                         ConversionSpec conv,
                                         FormatSinkImpl* sink) {
  return FormatCountCaptureHelper::ConvertHelper(v, conv, sink);
}

// Helper friend struct to hide implementation details from the public API of
// FormatArgImpl.
struct FormatArgImplFriend {
  template <typename Arg>
  static bool ToInt(Arg arg, int* out) {
    // A value initialized ConversionSpec has a `none` conv, which tells the
    // dispatcher to run the `int` conversion.
    return arg.dispatcher_(arg.data_, {}, out);
  }

  template <typename Arg>
  static bool Convert(Arg arg, str_format_internal::ConversionSpec conv,
                      FormatSinkImpl* out) {
    return arg.dispatcher_(arg.data_, conv, out);
  }

  template <typename Arg>
  static typename Arg::Dispatcher GetVTablePtrForTest(Arg arg) {
    return arg.dispatcher_;
  }
};

// A type-erased handle to a format argument.
class FormatArgImpl {
 private:
  enum { kInlinedSpace = 8 };

  using VoidPtr = str_format_internal::VoidPtr;

  union Data {
    const void* ptr;
    const volatile void* volatile_ptr;
    char buf[kInlinedSpace];
  };

  using Dispatcher = bool (*)(Data, ConversionSpec, void* out);

  template <typename T>
  struct store_by_value
      : std::integral_constant<bool, (sizeof(T) <= kInlinedSpace) &&
                                         (std::is_integral<T>::value ||
                                          std::is_floating_point<T>::value ||
                                          std::is_pointer<T>::value ||
                                          std::is_same<VoidPtr, T>::value)> {};

  enum StoragePolicy { ByPointer, ByVolatilePointer, ByValue };
  template <typename T>
  struct storage_policy
      : std::integral_constant<StoragePolicy,
                               (std::is_volatile<T>::value
                                    ? ByVolatilePointer
                                    : (store_by_value<T>::value ? ByValue
                                                                : ByPointer))> {
  };

  // To reduce the number of vtables we will decay values before hand.
  // Anything with a user-defined Convert will get its own vtable.
  // For everything else:
  //   - Decay char* and char arrays into `const char*`
  //   - Decay any other pointer to `const void*`
  //   - Decay all enums to their underlying type.
  //   - Decay function pointers to void*.
  template <typename T, typename = void>
  struct DecayType {
    static constexpr bool kHasUserDefined =
        str_format_internal::HasUserDefinedConvert<T>::value;
    using type = typename std::conditional<
        !kHasUserDefined && std::is_convertible<T, const char*>::value,
        const char*,
        typename std::conditional<!kHasUserDefined &&
                                      std::is_convertible<T, VoidPtr>::value,
                                  VoidPtr, const T&>::type>::type;
  };
  template <typename T>
  struct DecayType<T,
                   typename std::enable_if<
                       !str_format_internal::HasUserDefinedConvert<T>::value &&
                       std::is_enum<T>::value>::type> {
    using type = typename std::underlying_type<T>::type;
  };

 public:
  template <typename T>
  explicit FormatArgImpl(const T& value) {
    using D = typename DecayType<T>::type;
    static_assert(
        std::is_same<D, const T&>::value || storage_policy<D>::value == ByValue,
        "Decayed types must be stored by value");
    Init(static_cast<D>(value));
  }

 private:
  friend struct str_format_internal::FormatArgImplFriend;
  template <typename T, StoragePolicy = storage_policy<T>::value>
  struct Manager;

  template <typename T>
  struct Manager<T, ByPointer> {
    static Data SetValue(const T& value) {
      Data data;
      data.ptr = std::addressof(value);
      return data;
    }

    static const T& Value(Data arg) { return *static_cast<const T*>(arg.ptr); }
  };

  template <typename T>
  struct Manager<T, ByVolatilePointer> {
    static Data SetValue(const T& value) {
      Data data;
      data.volatile_ptr = &value;
      return data;
    }

    static const T& Value(Data arg) {
      return *static_cast<const T*>(arg.volatile_ptr);
    }
  };

  template <typename T>
  struct Manager<T, ByValue> {
    static Data SetValue(const T& value) {
      Data data;
      memcpy(data.buf, &value, sizeof(value));
      return data;
    }

    static T Value(Data arg) {
      T value;
      memcpy(&value, arg.buf, sizeof(T));
      return value;
    }
  };

  template <typename T>
  void Init(const T& value) {
    data_ = Manager<T>::SetValue(value);
    dispatcher_ = &Dispatch<T>;
  }

  template <typename T>
  static int ToIntVal(const T& val) {
    using CommonType = typename std::conditional<std::is_signed<T>::value,
                                                 int64_t, uint64_t>::type;
    if (static_cast<CommonType>(val) >
        static_cast<CommonType>((std::numeric_limits<int>::max)())) {
      return (std::numeric_limits<int>::max)();
    } else if (std::is_signed<T>::value &&
               static_cast<CommonType>(val) <
                   static_cast<CommonType>((std::numeric_limits<int>::min)())) {
      return (std::numeric_limits<int>::min)();
    }
    return static_cast<int>(val);
  }

  template <typename T>
  static bool ToInt(Data arg, int* out, std::true_type /* is_integral */,
                    std::false_type) {
    *out = ToIntVal(Manager<T>::Value(arg));
    return true;
  }

  template <typename T>
  static bool ToInt(Data arg, int* out, std::false_type,
                    std::true_type /* is_enum */) {
    *out = ToIntVal(static_cast<typename std::underlying_type<T>::type>(
        Manager<T>::Value(arg)));
    return true;
  }

  template <typename T>
  static bool ToInt(Data, int*, std::false_type, std::false_type) {
    return false;
  }

  template <typename T>
  static bool Dispatch(Data arg, ConversionSpec spec, void* out) {
    // A `none` conv indicates that we want the `int` conversion.
    if (ABSL_PREDICT_FALSE(spec.conv() == ConversionChar::none)) {
      return ToInt<T>(arg, static_cast<int*>(out), std::is_integral<T>(),
                      std::is_enum<T>());
    }

    return str_format_internal::FormatConvertImpl(
               Manager<T>::Value(arg), spec, static_cast<FormatSinkImpl*>(out))
        .value;
  }

  Data data_;
  Dispatcher dispatcher_;
};

#define ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(T, E) \
  E template bool FormatArgImpl::Dispatch<T>(Data, ConversionSpec, void*)

#define ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(...)                   \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(str_format_internal::VoidPtr,     \
                                             __VA_ARGS__);                     \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(bool, __VA_ARGS__);               \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(char, __VA_ARGS__);               \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(signed char, __VA_ARGS__);        \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned char, __VA_ARGS__);      \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(short, __VA_ARGS__); /* NOLINT */ \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned short,      /* NOLINT */ \
                                             __VA_ARGS__);                     \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int, __VA_ARGS__);                \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned int, __VA_ARGS__);       \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long, __VA_ARGS__); /* NOLINT */  \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long,      /* NOLINT */  \
                                             __VA_ARGS__);                     \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long long, /* NOLINT */           \
                                             __VA_ARGS__);                     \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long long, /* NOLINT */  \
                                             __VA_ARGS__);                     \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int128, __VA_ARGS__);             \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(uint128, __VA_ARGS__);            \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(float, __VA_ARGS__);              \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(double, __VA_ARGS__);             \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long double, __VA_ARGS__);        \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(const char*, __VA_ARGS__);        \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(std::string, __VA_ARGS__);        \
  ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(string_view, __VA_ARGS__)

ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(extern);


}  // namespace str_format_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_