poisson_distribution.h 8.56 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_POISSON_DISTRIBUTION_H_
#define ABSL_RANDOM_POISSON_DISTRIBUTION_H_

#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <ostream>
#include <type_traits>

#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

// absl::poisson_distribution:
// Generates discrete variates conforming to a Poisson distribution.
//   p(n) = (mean^n / n!) exp(-mean)
//
// Depending on the parameter, the distribution selects one of the following
// algorithms:
// * The standard algorithm, attributed to Knuth, extended using a split method
// for larger values
// * The "Ratio of Uniforms as a convenient method for sampling from classical
// discrete distributions", Stadlober, 1989.
// http://www.sciencedirect.com/science/article/pii/0377042790903495
//
// NOTE: param_type.mean() is a double, which permits values larger than
// poisson_distribution<IntType>::max(), however this should be avoided and
// the distribution results are limited to the max() value.
//
// The goals of this implementation are to provide good performance while still
// beig thread-safe: This limits the implementation to not using lgamma provided
// by <math.h>.
//
template <typename IntType = int>
class poisson_distribution {
 public:
  using result_type = IntType;

  class param_type {
   public:
    using distribution_type = poisson_distribution;
    explicit param_type(double mean = 1.0);

    double mean() const { return mean_; }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.mean_ == b.mean_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    friend class poisson_distribution;

    double mean_;
    double emu_;  // e ^ -mean_
    double lmu_;  // ln(mean_)
    double s_;
    double log_k_;
    int split_;

    static_assert(std::is_integral<IntType>::value,
                  "Class-template absl::poisson_distribution<> must be "
                  "parameterized using an integral type.");
  };

  poisson_distribution() : poisson_distribution(1.0) {}

  explicit poisson_distribution(double mean) : param_(mean) {}

  explicit poisson_distribution(const param_type& p) : param_(p) {}

  void reset() {}

  // generating functions
  template <typename URBG>
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
    return (*this)(g, param_);
  }

  template <typename URBG>
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
                         const param_type& p);

  param_type param() const { return param_; }
  void param(const param_type& p) { param_ = p; }

  result_type(min)() const { return 0; }
  result_type(max)() const { return (std::numeric_limits<result_type>::max)(); }

  double mean() const { return param_.mean(); }

  friend bool operator==(const poisson_distribution& a,
                         const poisson_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const poisson_distribution& a,
                         const poisson_distribution& b) {
    return a.param_ != b.param_;
  }

 private:
  param_type param_;
  random_internal::FastUniformBits<uint64_t> fast_u64_;
};

// -----------------------------------------------------------------------------
// Implementation details follow
// -----------------------------------------------------------------------------

template <typename IntType>
poisson_distribution<IntType>::param_type::param_type(double mean)
    : mean_(mean), split_(0) {
  assert(mean >= 0);
  assert(mean <= (std::numeric_limits<result_type>::max)());
  // As a defensive measure, avoid large values of the mean.  The rejection
  // algorithm used does not support very large values well.  It my be worth
  // changing algorithms to better deal with these cases.
  assert(mean <= 1e10);
  if (mean_ < 10) {
    // For small lambda, use the knuth method.
    split_ = 1;
    emu_ = std::exp(-mean_);
  } else if (mean_ <= 50) {
    // Use split-knuth method.
    split_ = 1 + static_cast<int>(mean_ / 10.0);
    emu_ = std::exp(-mean_ / static_cast<double>(split_));
  } else {
    // Use ratio of uniforms method.
    constexpr double k2E = 0.7357588823428846;
    constexpr double kSA = 0.4494580810294493;

    lmu_ = std::log(mean_);
    double a = mean_ + 0.5;
    s_ = kSA + std::sqrt(k2E * a);
    const double mode = std::ceil(mean_) - 1;
    log_k_ = lmu_ * mode - absl::random_internal::StirlingLogFactorial(mode);
  }
}

template <typename IntType>
template <typename URBG>
typename poisson_distribution<IntType>::result_type
poisson_distribution<IntType>::operator()(
    URBG& g,  // NOLINT(runtime/references)
    const param_type& p) {
  using random_internal::GeneratePositiveTag;
  using random_internal::GenerateRealFromBits;
  using random_internal::GenerateSignedTag;

  if (p.split_ != 0) {
    // Use Knuth's algorithm with range splitting to avoid floating-point
    // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on
    // (0,1); return the number of variates required for product(Ui) <
    // exp(-lambda).
    //
    // The expected number of variates required for Knuth's method can be
    // computed as follows:
    // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives
    // the expected number of uniform variates
    // required for a given lambda, which is:
    //  lambda = [2, 5,  9, 10, 11, 12, 13, 14, 15, 16, 17]
    //  n      = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25]
    //
    result_type n = 0;
    for (int split = p.split_; split > 0; --split) {
      double r = 1.0;
      do {
        r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(
            fast_u64_(g));  // U(-1, 0)
        ++n;
      } while (r > p.emu_);
      --n;
    }
    return n;
  }

  // Use ratio of uniforms method.
  //
  // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1),
  //     a = lambda + 1/2,
  //     s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e),
  //     x = s * v/u + a.
  // P(floor(x) = k | u^2 < f(floor(x))/k), where
  // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise,
  // and k = max(f).
  const double a = p.mean_ + 0.5;
  for (;;) {
    const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(
        fast_u64_(g));  // U(0, 1)
    const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(
        fast_u64_(g));  // U(-1, 1)

    const double x = std::floor(p.s_ * v / u + a);
    if (x < 0) continue;  // f(negative) = 0
    const double rhs = x * p.lmu_;
    // clang-format off
    double s = (x <= 1.0) ? 0.0
             : (x == 2.0) ? 0.693147180559945
             : absl::random_internal::StirlingLogFactorial(x);
    // clang-format on
    const double lhs = 2.0 * std::log(u) + p.log_k_ + s;
    if (lhs < rhs) {
      return x > (max)() ? (max)()
                         : static_cast<result_type>(x);  // f(x)/k >= u^2
    }
  }
}

template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
    const poisson_distribution<IntType>& x) {
  auto saver = random_internal::make_ostream_state_saver(os);
  os.precision(random_internal::stream_precision_helper<double>::kPrecision);
  os << x.mean();
  return os;
}

template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
    poisson_distribution<IntType>& x) {     // NOLINT(runtime/references)
  using param_type = typename poisson_distribution<IntType>::param_type;

  auto saver = random_internal::make_istream_state_saver(is);
  double mean = random_internal::read_floating_point<double>(is);
  if (!is.fail()) {
    x.param(param_type(mean));
  }
  return is;
}

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_POISSON_DISTRIBUTION_H_