log_uniform_int_distribution.h 8.57 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_

#include <algorithm>
#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <ostream>
#include <type_traits>

#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
#include "absl/random/uniform_int_distribution.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

// log_uniform_int_distribution:
//
// Returns a random variate R in range [min, max] such that
// floor(log(R-min, base)) is uniformly distributed.
// We ensure uniformity by discretization using the
// boundary sets [0, 1, base, base * base, ... min(base*n, max)]
//
template <typename IntType = int>
class log_uniform_int_distribution {
 private:
  using unsigned_type =
      typename random_internal::make_unsigned_bits<IntType>::type;

 public:
  using result_type = IntType;

  class param_type {
   public:
    using distribution_type = log_uniform_int_distribution;

    explicit param_type(
        result_type min = 0,
        result_type max = (std::numeric_limits<result_type>::max)(),
        result_type base = 2)
        : min_(min),
          max_(max),
          base_(base),
          range_(static_cast<unsigned_type>(max_) -
                 static_cast<unsigned_type>(min_)),
          log_range_(0) {
      assert(max_ >= min_);
      assert(base_ > 1);

      if (base_ == 2) {
        // Determine where the first set bit is on range(), giving a log2(range)
        // value which can be used to construct bounds.
        log_range_ = (std::min)(random_internal::LeadingSetBit(range()),
                                std::numeric_limits<unsigned_type>::digits);
      } else {
        // NOTE: Computing the logN(x) introduces error from 2 sources:
        // 1. Conversion of int to double loses precision for values >=
        // 2^53, which may cause some log() computations to operate on
        // different values.
        // 2. The error introduced by the division will cause the result
        // to differ from the expected value.
        //
        // Thus a result which should equal K may equal K +/- epsilon,
        // which can eliminate some values depending on where the bounds fall.
        const double inv_log_base = 1.0 / std::log(base_);
        const double log_range = std::log(static_cast<double>(range()) + 0.5);
        log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));
      }
    }

    result_type(min)() const { return min_; }
    result_type(max)() const { return max_; }
    result_type base() const { return base_; }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    friend class log_uniform_int_distribution;

    int log_range() const { return log_range_; }
    unsigned_type range() const { return range_; }

    result_type min_;
    result_type max_;
    result_type base_;
    unsigned_type range_;  // max - min
    int log_range_;        // ceil(logN(range_))

    static_assert(std::is_integral<IntType>::value,
                  "Class-template absl::log_uniform_int_distribution<> must be "
                  "parameterized using an integral type.");
  };

  log_uniform_int_distribution() : log_uniform_int_distribution(0) {}

  explicit log_uniform_int_distribution(
      result_type min,
      result_type max = (std::numeric_limits<result_type>::max)(),
      result_type base = 2)
      : param_(min, max, base) {}

  explicit log_uniform_int_distribution(const param_type& p) : param_(p) {}

  void reset() {}

  // generating functions
  template <typename URBG>
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
    return (*this)(g, param_);
  }

  template <typename URBG>
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
                         const param_type& p) {
    return (p.min)() + Generate(g, p);
  }

  result_type(min)() const { return (param_.min)(); }
  result_type(max)() const { return (param_.max)(); }
  result_type base() const { return param_.base(); }

  param_type param() const { return param_; }
  void param(const param_type& p) { param_ = p; }

  friend bool operator==(const log_uniform_int_distribution& a,
                         const log_uniform_int_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const log_uniform_int_distribution& a,
                         const log_uniform_int_distribution& b) {
    return a.param_ != b.param_;
  }

 private:
  // Returns a log-uniform variate in the range [0, p.range()]. The caller
  // should add min() to shift the result to the correct range.
  template <typename URNG>
  unsigned_type Generate(URNG& g,  // NOLINT(runtime/references)
                         const param_type& p);

  param_type param_;
};

template <typename IntType>
template <typename URBG>
typename log_uniform_int_distribution<IntType>::unsigned_type
log_uniform_int_distribution<IntType>::Generate(
    URBG& g,  // NOLINT(runtime/references)
    const param_type& p) {
  // sample e over [0, log_range]. Map the results of e to this:
  // 0 => 0
  // 1 => [1, b-1]
  // 2 => [b, (b^2)-1]
  // n => [b^(n-1)..(b^n)-1]
  const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g);
  if (e == 0) {
    return 0;
  }
  const int d = e - 1;

  unsigned_type base_e, top_e;
  if (p.base() == 2) {
    base_e = static_cast<unsigned_type>(1) << d;

    top_e = (e >= std::numeric_limits<unsigned_type>::digits)
                ? (std::numeric_limits<unsigned_type>::max)()
                : (static_cast<unsigned_type>(1) << e) - 1;
  } else {
    const double r = std::pow(p.base(), d);
    const double s = (r * p.base()) - 1.0;

    base_e =
        (r > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))
            ? (std::numeric_limits<unsigned_type>::max)()
            : static_cast<unsigned_type>(r);

    top_e =
        (s > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))
            ? (std::numeric_limits<unsigned_type>::max)()
            : static_cast<unsigned_type>(s);
  }

  const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e;
  const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;

  // choose uniformly over [lo, hi]
  return absl::uniform_int_distribution<result_type>(lo, hi)(g);
}

template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
    const log_uniform_int_distribution<IntType>& x) {
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;
  auto saver = random_internal::make_ostream_state_saver(os);
  os << static_cast<stream_type>((x.min)()) << os.fill()
     << static_cast<stream_type>((x.max)()) << os.fill()
     << static_cast<stream_type>(x.base());
  return os;
}

template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,       // NOLINT(runtime/references)
    log_uniform_int_distribution<IntType>& x) {  // NOLINT(runtime/references)
  using param_type = typename log_uniform_int_distribution<IntType>::param_type;
  using result_type =
      typename log_uniform_int_distribution<IntType>::result_type;
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;

  stream_type min;
  stream_type max;
  stream_type base;

  auto saver = random_internal::make_istream_state_saver(is);
  is >> min >> max >> base;
  if (!is.fail()) {
    x.param(param_type(static_cast<result_type>(min),
                       static_cast<result_type>(max),
                       static_cast<result_type>(base)));
  }
  return is;
}

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_