fast_uniform_bits.h 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_

#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>

#include "absl/base/config.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
// Returns true if the input value is zero or a power of two. Useful for
// determining if the range of output values in a URBG
template <typename UIntType>
constexpr bool IsPowerOfTwoOrZero(UIntType n) {
  return (n == 0) || ((n & (n - 1)) == 0);
}

// Computes the length of the range of values producible by the URBG, or returns
// zero if that would encompass the entire range of representable values in
// URBG::result_type.
template <typename URBG>
constexpr typename URBG::result_type RangeSize() {
  using result_type = typename URBG::result_type;
  return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
          (URBG::min)() == std::numeric_limits<result_type>::lowest())
             ? result_type{0}
             : (URBG::max)() - (URBG::min)() + result_type{1};
}

template <typename UIntType>
constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
  return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
}

// Given a URBG generating values in the closed interval [Lo, Hi], returns the
// largest power of two less than or equal to `Hi - Lo + 1`.
template <typename URBG>
constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
  return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
}

// Computes the floor of the log. (i.e., std::floor(std::log2(N));
template <typename UIntType>
constexpr UIntType IntegerLog2(UIntType n) {
  return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
}

// Returns the number of bits of randomness returned through
// `PowerOfTwoVariate(urbg)`.
template <typename URBG>
constexpr size_t NumBits() {
  return RangeSize<URBG>() == 0
             ? std::numeric_limits<typename URBG::result_type>::digits
             : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
}

// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
// If `n == 0`, all bits are set.
template <typename UIntType>
constexpr UIntType MaskFromShift(UIntType n) {
  return ((n % std::numeric_limits<UIntType>::digits) == 0)
             ? ~UIntType{0}
             : (UIntType{1} << n) - UIntType{1};
}

// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
//  `UIntType`: the result (output) type
//
// The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
// instantiated from an existing generator through a copy or a move. It does
// not, however, facilitate the production of pseudorandom bits from an un-owned
// generator that will outlive the std::independent_bits_engine instance.
template <typename UIntType = uint64_t>
class FastUniformBits {
 public:
  using result_type = UIntType;

  static constexpr result_type(min)() { return 0; }
  static constexpr result_type(max)() {
    return (std::numeric_limits<result_type>::max)();
  }

  template <typename URBG>
  result_type operator()(URBG& g);  // NOLINT(runtime/references)

 private:
  static_assert(std::is_unsigned<UIntType>::value,
                "Class-template FastUniformBits<> must be parameterized using "
                "an unsigned type.");

  // PowerOfTwoVariate() generates a single random variate, always returning a
  // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
  // the URBG already generates values in a power-of-two range, the generator
  // itself is used. Otherwise, we use rejection sampling on the largest
  // possible power-of-two-sized subrange.
  struct PowerOfTwoTag {};
  struct RejectionSamplingTag {};
  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g) {  // NOLINT(runtime/references)
    using tag =
        typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
                                  PowerOfTwoTag, RejectionSamplingTag>::type;
    return PowerOfTwoVariate(g, tag{});
  }

  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g,  // NOLINT(runtime/references)
      PowerOfTwoTag) {
    return g() - (URBG::min)();
  }

  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g,  // NOLINT(runtime/references)
      RejectionSamplingTag) {
    // Use rejection sampling to ensure uniformity across the range.
    typename URBG::result_type u;
    do {
      u = g() - (URBG::min)();
    } while (u >= PowerOfTwoSubRangeSize<URBG>());
    return u;
  }

  // Generate() generates a random value, dispatched on whether
  // the underlying URBG must loop over multiple calls or not.
  template <typename URBG>
  result_type Generate(URBG& g,  // NOLINT(runtime/references)
                       std::true_type /* avoid_looping */);

  template <typename URBG>
  result_type Generate(URBG& g,  // NOLINT(runtime/references)
                       std::false_type /* avoid_looping */);
};

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::operator()(URBG& g) {  // NOLINT(runtime/references)
  // kRangeMask is the mask used when sampling variates from the URBG when the
  // width of the URBG range is not a power of 2.
  // Y = (2 ^ kRange) - 1
  static_assert((URBG::max)() > (URBG::min)(),
                "URBG::max and URBG::min may not be equal.");
  using urbg_result_type = typename URBG::result_type;
  constexpr urbg_result_type kRangeMask =
      RangeSize<URBG>() == 0
          ? (std::numeric_limits<urbg_result_type>::max)()
          : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
  return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
}

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
                                    std::true_type /* avoid_looping */) {
  // The width of the result_type is less than than the width of the random bits
  // provided by URBG.  Thus, generate a single value and then simply mask off
  // the required bits.

  return PowerOfTwoVariate(g) & (max)();
}

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
                                    std::false_type /* avoid_looping */) {
  // See [rand.adapt.ibits] for more details on the constants calculated below.
  //
  // It is preferable to use roughly the same number of bits from each generator
  // call, however this is only possible when the number of bits provided by the
  // URBG is a divisor of the number of bits in `result_type`. In all other
  // cases, the number of bits used cannot always be the same, but it can be
  // guaranteed to be off by at most 1. Thus we run two loops, one with a
  // smaller bit-width size (`kSmallWidth`) and one with a larger width size
  // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
  // `kSmallIters` and `kLargeIters` times respectively such
  // that
  //
  //    `kTotalWidth == kSmallIters * kSmallWidth
  //                    + kLargeIters * kLargeWidth`
  //
  // where `kTotalWidth` is the total number of bits in `result_type`.
  //
  constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
  constexpr size_t kUrbgWidth = NumBits<URBG>();
  constexpr size_t kTotalIters =
      kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
  constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
  constexpr size_t kLargeWidth = kSmallWidth + 1;
  //
  // Because `kLargeWidth == kSmallWidth + 1`, it follows that
  //
  //     `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
  //
  // and therefore
  //
  //     `kLargeIters == kTotalWidth % kSmallWidth`
  //
  // Intuitively, each iteration with the large width accounts for one unit
  // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
  // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
  // there would be no need for any large iterations (i.e., one loop would
  // suffice), and indeed, in this case, `kLargeIters` would be zero.
  constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
  constexpr size_t kSmallIters =
      (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;

  static_assert(
      kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
      "Error in looping constant calculations.");

  result_type s = 0;

  constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
  constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
  for (size_t n = 0; n < kSmallIters; ++n) {
    s = (s << kSmallShift) +
        (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
  }

  constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
  constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
  for (size_t n = 0; n < kLargeIters; ++n) {
    s = (s << kLargeShift) +
        (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
  }

  static_assert(
      kLargeShift == kSmallShift + 1 ||
          (kLargeShift == 0 &&
           kSmallShift == std::numeric_limits<result_type>::digits - 1),
      "Error in looping constant calculations");

  return s;
}

}  // namespace random_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_