gaussian_distribution.h 9.26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
#define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_

// absl::gaussian_distribution implements the Ziggurat algorithm
// for generating random gaussian numbers.
//
// Implementation based on "The Ziggurat Method for Generating Random Variables"
// by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/
//

#include <cmath>
#include <cstdint>
#include <istream>
#include <limits>
#include <type_traits>

#include "absl/base/config.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {

// absl::gaussian_distribution_base implements the underlying ziggurat algorithm
// using the ziggurat tables generated by the gaussian_distribution_gentables
// binary.
//
// The specific algorithm has some of the improvements suggested by the
// 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",
// Jurgen A Doornik.  (https://www.doornik.com/research/ziggurat.pdf)
class ABSL_DLL gaussian_distribution_base {
 public:
  template <typename URBG>
  inline double zignor(URBG& g);  // NOLINT(runtime/references)

 private:
  friend class TableGenerator;

  template <typename URBG>
  inline double zignor_fallback(URBG& g,  // NOLINT(runtime/references)
                                bool neg);

  // Constants used for the gaussian distribution.
  static constexpr double kR = 3.442619855899;  // Start of the tail.
  static constexpr double kRInv = 0.29047645161474317;  // ~= (1.0 / kR) .
  static constexpr double kV = 9.91256303526217e-3;
  static constexpr uint64_t kMask = 0x07f;

  // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area
  // points on one-half of the normal distribution, where the pdf function,
  // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.
  //
  // These tables are just over 2kb in size; larger tables might improve the
  // distributions, but also lead to more cache pollution.
  //
  // x = {3.71308, 3.44261, 3.22308, ..., 0}
  // f = {0.00101, 0.00266, 0.00554, ..., 1}
  struct Tables {
    double x[kMask + 2];
    double f[kMask + 2];
  };
  static const Tables zg_;
  random_internal::FastUniformBits<uint64_t> fast_u64_;
};

}  // namespace random_internal

// absl::gaussian_distribution:
// Generates a number conforming to a Gaussian distribution.
template <typename RealType = double>
class gaussian_distribution : random_internal::gaussian_distribution_base {
 public:
  using result_type = RealType;

  class param_type {
   public:
    using distribution_type = gaussian_distribution;

    explicit param_type(result_type mean = 0, result_type stddev = 1)
        : mean_(mean), stddev_(stddev) {}

    // Returns the mean distribution parameter.  The mean specifies the location
    // of the peak.  The default value is 0.0.
    result_type mean() const { return mean_; }

    // Returns the deviation distribution parameter.  The default value is 1.0.
    result_type stddev() const { return stddev_; }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    result_type mean_;
    result_type stddev_;

    static_assert(
        std::is_floating_point<RealType>::value,
        "Class-template absl::gaussian_distribution<> must be parameterized "
        "using a floating-point type.");
  };

  gaussian_distribution() : gaussian_distribution(0) {}

  explicit gaussian_distribution(result_type mean, result_type stddev = 1)
      : param_(mean, stddev) {}

  explicit gaussian_distribution(const param_type& p) : param_(p) {}

  void reset() {}

  // Generating functions
  template <typename URBG>
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
    return (*this)(g, param_);
  }

  template <typename URBG>
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
                         const param_type& p);

  param_type param() const { return param_; }
  void param(const param_type& p) { param_ = p; }

  result_type(min)() const {
    return -std::numeric_limits<result_type>::infinity();
  }
  result_type(max)() const {
    return std::numeric_limits<result_type>::infinity();
  }

  result_type mean() const { return param_.mean(); }
  result_type stddev() const { return param_.stddev(); }

  friend bool operator==(const gaussian_distribution& a,
                         const gaussian_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const gaussian_distribution& a,
                         const gaussian_distribution& b) {
    return a.param_ != b.param_;
  }

 private:
  param_type param_;
};

// --------------------------------------------------------------------------
// Implementation details only below
// --------------------------------------------------------------------------

template <typename RealType>
template <typename URBG>
typename gaussian_distribution<RealType>::result_type
gaussian_distribution<RealType>::operator()(
    URBG& g,  // NOLINT(runtime/references)
    const param_type& p) {
  return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
}

template <typename CharT, typename Traits, typename RealType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
    const gaussian_distribution<RealType>& x) {
  auto saver = random_internal::make_ostream_state_saver(os);
  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
  os << x.mean() << os.fill() << x.stddev();
  return os;
}

template <typename CharT, typename Traits, typename RealType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
    gaussian_distribution<RealType>& x) {   // NOLINT(runtime/references)
  using result_type = typename gaussian_distribution<RealType>::result_type;
  using param_type = typename gaussian_distribution<RealType>::param_type;

  auto saver = random_internal::make_istream_state_saver(is);
  auto mean = random_internal::read_floating_point<result_type>(is);
  if (is.fail()) return is;
  auto stddev = random_internal::read_floating_point<result_type>(is);
  if (!is.fail()) {
    x.param(param_type(mean, stddev));
  }
  return is;
}

namespace random_internal {

template <typename URBG>
inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
  using random_internal::GeneratePositiveTag;
  using random_internal::GenerateRealFromBits;

  // This fallback path happens approximately 0.05% of the time.
  double x, y;
  do {
    // kRInv = 1/r, U(0, 1)
    x = kRInv *
        std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
            fast_u64_(g)));
    y = -std::log(
        GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
  } while ((y + y) < (x * x));
  return neg ? (x - kR) : (kR - x);
}

template <typename URBG>
inline double gaussian_distribution_base::zignor(
    URBG& g) {  // NOLINT(runtime/references)
  using random_internal::GeneratePositiveTag;
  using random_internal::GenerateRealFromBits;
  using random_internal::GenerateSignedTag;

  while (true) {
    // We use a single uint64_t to generate both a double and a strip.
    // These bits are unused when the generated double is > 1/2^5.
    // This may introduce some bias from the duplicated low bits of small
    // values (those smaller than 1/2^5, which all end up on the left tail).
    uint64_t bits = fast_u64_(g);
    int i = static_cast<int>(bits & kMask);  // pick a random strip
    double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
        bits);  // U(-1, 1)
    const double x = j * zg_.x[i];

    // Retangular box. Handles >97% of all cases.
    // For any given box, this handles between 75% and 99% of values.
    // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%
    if (std::abs(x) < zg_.x[i + 1]) {
      return x;
    }

    // i == 0: Base box. Sample using a ratio of uniforms.
    if (i == 0) {
      // This path happens about 0.05% of the time.
      return zignor_fallback(g, j < 0);
    }

    // i > 0: Wedge samples using precomputed values.
    double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
        fast_u64_(g));  // U(0, 1)
    if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
        std::exp(-0.5 * x * x)) {
      return x;
    }

    // The wedge was missed; reject the value and try again.
  }
}

}  // namespace random_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_