exponential_distribution.h 5.29 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
#define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_

#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <type_traits>

#include "absl/meta/type_traits.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

// absl::exponential_distribution:
// Generates a number conforming to an exponential distribution and is
// equivalent to the standard [rand.dist.pois.exp] distribution.
template <typename RealType = double>
class exponential_distribution {
 public:
  using result_type = RealType;

  class param_type {
   public:
    using distribution_type = exponential_distribution;

    explicit param_type(result_type lambda = 1) : lambda_(lambda) {
      assert(lambda > 0);
      neg_inv_lambda_ = -result_type(1) / lambda_;
    }

    result_type lambda() const { return lambda_; }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.lambda_ == b.lambda_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    friend class exponential_distribution;

    result_type lambda_;
    result_type neg_inv_lambda_;

    static_assert(
        std::is_floating_point<RealType>::value,
        "Class-template absl::exponential_distribution<> must be parameterized "
        "using a floating-point type.");
  };

  exponential_distribution() : exponential_distribution(1) {}

  explicit exponential_distribution(result_type lambda) : param_(lambda) {}

  explicit exponential_distribution(const param_type& p) : param_(p) {}

  void reset() {}

  // Generating functions
  template <typename URBG>
  result_type operator()(URBG& g) {  // NOLINT(runtime/references)
    return (*this)(g, param_);
  }

  template <typename URBG>
  result_type operator()(URBG& g,  // NOLINT(runtime/references)
                         const param_type& p);

  param_type param() const { return param_; }
  void param(const param_type& p) { param_ = p; }

  result_type(min)() const { return 0; }
  result_type(max)() const {
    return std::numeric_limits<result_type>::infinity();
  }

  result_type lambda() const { return param_.lambda(); }

  friend bool operator==(const exponential_distribution& a,
                         const exponential_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const exponential_distribution& a,
                         const exponential_distribution& b) {
    return a.param_ != b.param_;
  }

 private:
  param_type param_;
  random_internal::FastUniformBits<uint64_t> fast_u64_;
};

// --------------------------------------------------------------------------
// Implementation details follow
// --------------------------------------------------------------------------

template <typename RealType>
template <typename URBG>
typename exponential_distribution<RealType>::result_type
exponential_distribution<RealType>::operator()(
    URBG& g,  // NOLINT(runtime/references)
    const param_type& p) {
  using random_internal::GenerateNegativeTag;
  using random_internal::GenerateRealFromBits;
  using real_type =
      absl::conditional_t<std::is_same<RealType, float>::value, float, double>;

  const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
                                             false>(fast_u64_(g));  // U(-1, 0)

  // log1p(-x) is mathematically equivalent to log(1 - x) but has more
  // accuracy for x near zero.
  return p.neg_inv_lambda_ * std::log1p(u);
}

template <typename CharT, typename Traits, typename RealType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
    const exponential_distribution<RealType>& x) {
  auto saver = random_internal::make_ostream_state_saver(os);
  os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
  os << x.lambda();
  return os;
}

template <typename CharT, typename Traits, typename RealType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,    // NOLINT(runtime/references)
    exponential_distribution<RealType>& x) {  // NOLINT(runtime/references)
  using result_type = typename exponential_distribution<RealType>::result_type;
  using param_type = typename exponential_distribution<RealType>::param_type;
  result_type lambda;

  auto saver = random_internal::make_istream_state_saver(is);
  lambda = random_internal::read_floating_point<result_type>(is);
  if (!is.fail()) {
    x.param(param_type(lambda));
  }
  return is;
}

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_