hash_policy_traits.h 7.26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_

#include <cstddef>
#include <memory>
#include <type_traits>
#include <utility>

#include "absl/meta/type_traits.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {

// Defines how slots are initialized/destroyed/moved.
template <class Policy, class = void>
struct hash_policy_traits {
 private:
  struct ReturnKey {
    // We return `Key` here.
    // When Key=T&, we forward the lvalue reference.
    // When Key=T, we return by value to avoid a dangling reference.
    // eg, for string_hash_map.
    template <class Key, class... Args>
    Key operator()(Key&& k, const Args&...) const {
      return std::forward<Key>(k);
    }
  };

  template <class P = Policy, class = void>
  struct ConstantIteratorsImpl : std::false_type {};

  template <class P>
  struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>>
      : P::constant_iterators {};

 public:
  // The actual object stored in the hash table.
  using slot_type = typename Policy::slot_type;

  // The type of the keys stored in the hashtable.
  using key_type = typename Policy::key_type;

  // The argument type for insertions into the hashtable. This is different
  // from value_type for increased performance. See initializer_list constructor
  // and insert() member functions for more details.
  using init_type = typename Policy::init_type;

  using reference = decltype(Policy::element(std::declval<slot_type*>()));
  using pointer = typename std::remove_reference<reference>::type*;
  using value_type = typename std::remove_reference<reference>::type;

  // Policies can set this variable to tell raw_hash_set that all iterators
  // should be constant, even `iterator`. This is useful for set-like
  // containers.
  // Defaults to false if not provided by the policy.
  using constant_iterators = ConstantIteratorsImpl<>;

  // PRECONDITION: `slot` is UNINITIALIZED
  // POSTCONDITION: `slot` is INITIALIZED
  template <class Alloc, class... Args>
  static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
    Policy::construct(alloc, slot, std::forward<Args>(args)...);
  }

  // PRECONDITION: `slot` is INITIALIZED
  // POSTCONDITION: `slot` is UNINITIALIZED
  template <class Alloc>
  static void destroy(Alloc* alloc, slot_type* slot) {
    Policy::destroy(alloc, slot);
  }

  // Transfers the `old_slot` to `new_slot`. Any memory allocated by the
  // allocator inside `old_slot` to `new_slot` can be transferred.
  //
  // OPTIONAL: defaults to:
  //
  //     clone(new_slot, std::move(*old_slot));
  //     destroy(old_slot);
  //
  // PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
  // POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
  //                UNINITIALIZED
  template <class Alloc>
  static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) {
    transfer_impl(alloc, new_slot, old_slot, 0);
  }

  // PRECONDITION: `slot` is INITIALIZED
  // POSTCONDITION: `slot` is INITIALIZED
  template <class P = Policy>
  static auto element(slot_type* slot) -> decltype(P::element(slot)) {
    return P::element(slot);
  }

  // Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
  //
  // If `slot` is nullptr, returns the constant amount of memory owned by any
  // full slot or -1 if slots own variable amounts of memory.
  //
  // PRECONDITION: `slot` is INITIALIZED or nullptr
  template <class P = Policy>
  static size_t space_used(const slot_type* slot) {
    return P::space_used(slot);
  }

  // Provides generalized access to the key for elements, both for elements in
  // the table and for elements that have not yet been inserted (or even
  // constructed).  We would like an API that allows us to say: `key(args...)`
  // but we cannot do that for all cases, so we use this more general API that
  // can be used for many things, including the following:
  //
  //   - Given an element in a table, get its key.
  //   - Given an element initializer, get its key.
  //   - Given `emplace()` arguments, get the element key.
  //
  // Implementations of this must adhere to a very strict technical
  // specification around aliasing and consuming arguments:
  //
  // Let `value_type` be the result type of `element()` without ref- and
  // cv-qualifiers. The first argument is a functor, the rest are constructor
  // arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
  // `k` is the element key, and `xs...` are the new constructor arguments for
  // `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
  // `ts...`. The key won't be touched once `xs...` are used to construct an
  // element; `ts...` won't be touched at all, which allows `apply()` to consume
  // any rvalues among them.
  //
  // If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
  // trigger a hard compile error unless it originates from `f`. In other words,
  // `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
  // constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
  //
  // If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
  // `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
  template <class F, class... Ts, class P = Policy>
  static auto apply(F&& f, Ts&&... ts)
      -> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) {
    return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...);
  }

  // Returns the "key" portion of the slot.
  // Used for node handle manipulation.
  template <class P = Policy>
  static auto key(slot_type* slot)
      -> decltype(P::apply(ReturnKey(), element(slot))) {
    return P::apply(ReturnKey(), element(slot));
  }

  // Returns the "value" (as opposed to the "key") portion of the element. Used
  // by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
  template <class T, class P = Policy>
  static auto value(T* elem) -> decltype(P::value(elem)) {
    return P::value(elem);
  }

 private:
  // Use auto -> decltype as an enabler.
  template <class Alloc, class P = Policy>
  static auto transfer_impl(Alloc* alloc, slot_type* new_slot,
                            slot_type* old_slot, int)
      -> decltype((void)P::transfer(alloc, new_slot, old_slot)) {
    P::transfer(alloc, new_slot, old_slot);
  }
  template <class Alloc>
  static void transfer_impl(Alloc* alloc, slot_type* new_slot,
                            slot_type* old_slot, char) {
    construct(alloc, new_slot, std::move(element(old_slot)));
    destroy(alloc, old_slot);
  }
};

}  // namespace container_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_