container_memory.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_

#ifdef ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif

#ifdef MEMORY_SANITIZER
#include <sanitizer/msan_interface.h>
#endif

#include <cassert>
#include <cstddef>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>

#include "absl/memory/memory.h"
#include "absl/utility/utility.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {

// Allocates at least n bytes aligned to the specified alignment.
// Alignment must be a power of 2. It must be positive.
//
// Note that many allocators don't honor alignment requirements above certain
// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
// Allocate() doesn't apply alignment corrections. If the underlying allocator
// returns insufficiently alignment pointer, that's what you are going to get.
template <size_t Alignment, class Alloc>
void* Allocate(Alloc* alloc, size_t n) {
  static_assert(Alignment > 0, "");
  assert(n && "n must be positive");
  struct alignas(Alignment) M {};
  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
  A mem_alloc(*alloc);
  void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
  assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
         "allocator does not respect alignment");
  return p;
}

// The pointer must have been previously obtained by calling
// Allocate<Alignment>(alloc, n).
template <size_t Alignment, class Alloc>
void Deallocate(Alloc* alloc, void* p, size_t n) {
  static_assert(Alignment > 0, "");
  assert(n && "n must be positive");
  struct alignas(Alignment) M {};
  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
  A mem_alloc(*alloc);
  AT::deallocate(mem_alloc, static_cast<M*>(p),
                 (n + sizeof(M) - 1) / sizeof(M));
}

namespace memory_internal {

// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
template <class Alloc, class T, class Tuple, size_t... I>
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
                            absl::index_sequence<I...>) {
  absl::allocator_traits<Alloc>::construct(
      *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
}

template <class T, class F>
struct WithConstructedImplF {
  template <class... Args>
  decltype(std::declval<F>()(std::declval<T>())) operator()(
      Args&&... args) const {
    return std::forward<F>(f)(T(std::forward<Args>(args)...));
  }
  F&& f;
};

template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
    Tuple&& t, absl::index_sequence<Is...>, F&& f) {
  return WithConstructedImplF<T, F>{std::forward<F>(f)}(
      std::get<Is>(std::forward<Tuple>(t))...);
}

template <class T, size_t... Is>
auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
    -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
  return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
}

// Returns a tuple of references to the elements of the input tuple. T must be a
// tuple.
template <class T>
auto TupleRef(T&& t) -> decltype(
    TupleRefImpl(std::forward<T>(t),
                 absl::make_index_sequence<
                     std::tuple_size<typename std::decay<T>::type>::value>())) {
  return TupleRefImpl(
      std::forward<T>(t),
      absl::make_index_sequence<
          std::tuple_size<typename std::decay<T>::type>::value>());
}

template <class F, class K, class V>
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
                           std::declval<std::tuple<K>>(), std::declval<V>()))
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
  const auto& key = std::get<0>(p.first);
  return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
                            std::move(p.second));
}

}  // namespace memory_internal

// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
template <class Alloc, class T, class Tuple>
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
  memory_internal::ConstructFromTupleImpl(
      alloc, ptr, std::forward<Tuple>(t),
      absl::make_index_sequence<
          std::tuple_size<typename std::decay<Tuple>::type>::value>());
}

// Constructs T using the args specified in the tuple and calls F with the
// constructed value.
template <class T, class Tuple, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
    Tuple&& t, F&& f) {
  return memory_internal::WithConstructedImpl<T>(
      std::forward<Tuple>(t),
      absl::make_index_sequence<
          std::tuple_size<typename std::decay<Tuple>::type>::value>(),
      std::forward<F>(f));
}

// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
// tuples with references to the passed arguments. The tuples contain
// constructor arguments for the first and the second elements of the pair.
//
// The following two snippets are equivalent.
//
// 1. std::pair<F, S> p(args...);
//
// 2. auto a = PairArgs(args...);
//    std::pair<F, S> p(std::piecewise_construct,
//                      std::move(p.first), std::move(p.second));
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
  return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
          std::forward_as_tuple(std::forward<S>(s))};
}
template <class F, class S>
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
    const std::pair<F, S>& p) {
  return PairArgs(p.first, p.second);
}
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
  return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
}
template <class F, class S>
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
    -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
                               memory_internal::TupleRef(std::forward<S>(s)))) {
  return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
                        memory_internal::TupleRef(std::forward<S>(s)));
}

// A helper function for implementing apply() in map policies.
template <class F, class... Args>
auto DecomposePair(F&& f, Args&&... args)
    -> decltype(memory_internal::DecomposePairImpl(
        std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
  return memory_internal::DecomposePairImpl(
      std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
}

// A helper function for implementing apply() in set policies.
template <class F, class Arg>
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
DecomposeValue(F&& f, Arg&& arg) {
  const auto& key = arg;
  return std::forward<F>(f)(key, std::forward<Arg>(arg));
}

// Helper functions for asan and msan.
inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
#ifdef ADDRESS_SANITIZER
  ASAN_POISON_MEMORY_REGION(m, s);
#endif
#ifdef MEMORY_SANITIZER
  __msan_poison(m, s);
#endif
  (void)m;
  (void)s;
}

inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
#ifdef ADDRESS_SANITIZER
  ASAN_UNPOISON_MEMORY_REGION(m, s);
#endif
#ifdef MEMORY_SANITIZER
  __msan_unpoison(m, s);
#endif
  (void)m;
  (void)s;
}

template <typename T>
inline void SanitizerPoisonObject(const T* object) {
  SanitizerPoisonMemoryRegion(object, sizeof(T));
}

template <typename T>
inline void SanitizerUnpoisonObject(const T* object) {
  SanitizerUnpoisonMemoryRegion(object, sizeof(T));
}

namespace memory_internal {

// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
// offsetof(Pair, second) respectively. Otherwise they are -1.
//
// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
// type, which is non-portable.
template <class Pair, class = std::true_type>
struct OffsetOf {
  static constexpr size_t kFirst = -1;
  static constexpr size_t kSecond = -1;
};

template <class Pair>
struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
  static constexpr size_t kFirst = offsetof(Pair, first);
  static constexpr size_t kSecond = offsetof(Pair, second);
};

template <class K, class V>
struct IsLayoutCompatible {
 private:
  struct Pair {
    K first;
    V second;
  };

  // Is P layout-compatible with Pair?
  template <class P>
  static constexpr bool LayoutCompatible() {
    return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
           alignof(P) == alignof(Pair) &&
           memory_internal::OffsetOf<P>::kFirst ==
               memory_internal::OffsetOf<Pair>::kFirst &&
           memory_internal::OffsetOf<P>::kSecond ==
               memory_internal::OffsetOf<Pair>::kSecond;
  }

 public:
  // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
  // then it is safe to store them in a union and read from either.
  static constexpr bool value = std::is_standard_layout<K>() &&
                                std::is_standard_layout<Pair>() &&
                                memory_internal::OffsetOf<Pair>::kFirst == 0 &&
                                LayoutCompatible<std::pair<K, V>>() &&
                                LayoutCompatible<std::pair<const K, V>>();
};

}  // namespace memory_internal

// The internal storage type for key-value containers like flat_hash_map.
//
// It is convenient for the value_type of a flat_hash_map<K, V> to be
// pair<const K, V>; the "const K" prevents accidental modification of the key
// when dealing with the reference returned from find() and similar methods.
// However, this creates other problems; we want to be able to emplace(K, V)
// efficiently with move operations, and similarly be able to move a
// pair<K, V> in insert().
//
// The solution is this union, which aliases the const and non-const versions
// of the pair. This also allows flat_hash_map<const K, V> to work, even though
// that has the same efficiency issues with move in emplace() and insert() -
// but people do it anyway.
//
// If kMutableKeys is false, only the value member can be accessed.
//
// If kMutableKeys is true, key can be accessed through all slots while value
// and mutable_value must be accessed only via INITIALIZED slots. Slots are
// created and destroyed via mutable_value so that the key can be moved later.
//
// Accessing one of the union fields while the other is active is safe as
// long as they are layout-compatible, which is guaranteed by the definition of
// kMutableKeys. For C++11, the relevant section of the standard is
// https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
template <class K, class V>
union map_slot_type {
  map_slot_type() {}
  ~map_slot_type() = delete;
  using value_type = std::pair<const K, V>;
  using mutable_value_type = std::pair<K, V>;

  value_type value;
  mutable_value_type mutable_value;
  K key;
};

template <class K, class V>
struct map_slot_policy {
  using slot_type = map_slot_type<K, V>;
  using value_type = std::pair<const K, V>;
  using mutable_value_type = std::pair<K, V>;

 private:
  static void emplace(slot_type* slot) {
    // The construction of union doesn't do anything at runtime but it allows us
    // to access its members without violating aliasing rules.
    new (slot) slot_type;
  }
  // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
  // or the other via slot_type. We are also free to access the key via
  // slot_type::key in this case.
  using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;

 public:
  static value_type& element(slot_type* slot) { return slot->value; }
  static const value_type& element(const slot_type* slot) {
    return slot->value;
  }

  static const K& key(const slot_type* slot) {
    return kMutableKeys::value ? slot->key : slot->value.first;
  }

  template <class Allocator, class... Args>
  static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
    emplace(slot);
    if (kMutableKeys::value) {
      absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
                                                   std::forward<Args>(args)...);
    } else {
      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
                                                   std::forward<Args>(args)...);
    }
  }

  // Construct this slot by moving from another slot.
  template <class Allocator>
  static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
    emplace(slot);
    if (kMutableKeys::value) {
      absl::allocator_traits<Allocator>::construct(
          *alloc, &slot->mutable_value, std::move(other->mutable_value));
    } else {
      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
                                                   std::move(other->value));
    }
  }

  template <class Allocator>
  static void destroy(Allocator* alloc, slot_type* slot) {
    if (kMutableKeys::value) {
      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
    } else {
      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
    }
  }

  template <class Allocator>
  static void transfer(Allocator* alloc, slot_type* new_slot,
                       slot_type* old_slot) {
    emplace(new_slot);
    if (kMutableKeys::value) {
      absl::allocator_traits<Allocator>::construct(
          *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
    } else {
      absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
                                                   std::move(old_slot->value));
    }
    destroy(alloc, old_slot);
  }

  template <class Allocator>
  static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
    if (kMutableKeys::value) {
      using std::swap;
      swap(a->mutable_value, b->mutable_value);
    } else {
      value_type tmp = std::move(a->value);
      absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
      absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
                                                   std::move(b->value));
      absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
      absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
                                                   std::move(tmp));
    }
  }

  template <class Allocator>
  static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
    if (kMutableKeys::value) {
      dest->mutable_value = std::move(src->mutable_value);
    } else {
      absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
      absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
                                                   std::move(src->value));
    }
  }

  template <class Allocator>
  static void move(Allocator* alloc, slot_type* first, slot_type* last,
                   slot_type* result) {
    for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
      move(alloc, src, dest);
  }
};

}  // namespace container_internal
ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_