traffic_lights.cs 4.03 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.IO;
using System.Text.RegularExpressions;
using Google.OrTools.ConstraintSolver;

public class TrafficLights
{

  /**
   *
   * Traffic lights problem.
   *
   * CSPLib problem 16
   * http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob016/index.html
   * """
   * Specification:
   * Consider a four way traffic junction with eight traffic lights. Four of the traffic
   * lights are for the vehicles and can be represented by the variables V1 to V4 with domains
   * {r,ry,g,y} (for red, red-yellow, green and yellow). The other four traffic lights are
   * for the pedestrians and can be represented by the variables P1 to P4 with domains {r,g}.
   *
   * The constraints on these variables can be modelled by quaternary constraints on
   * (Vi, Pi, Vj, Pj ) for 1<=i<=4, j=(1+i)mod 4 which allow just the tuples
   * {(r,r,g,g), (ry,r,y,r), (g,g,r,r), (y,r,ry,r)}.
   *
   * It would be interesting to consider other types of junction (e.g. five roads
   * intersecting) as well as modelling the evolution over time of the traffic light sequence.
   * ...
   *
   * Results
   * Only 2^2 out of the 2^12 possible assignments are solutions.
   *
   * (V1,P1,V2,P2,V3,P3,V4,P4) =
   * {(r,r,g,g,r,r,g,g), (ry,r,y,r,ry,r,y,r), (g,g,r,r,g,g,r,r), (y,r,ry,r,y,r,ry,r)}
   * [(1,1,3,3,1,1,3,3), ( 2,1,4,1, 2,1,4,1), (3,3,1,1,3,3,1,1), (4,1, 2,1,4,1, 2,1)}
   * The problem has relative few constraints, but each is very
   * tight. Local propagation appears to be rather ineffective on this
   * problem.
   *
   * """
   * Note: In this model we use only the constraint
   *  solver.AllowedAssignments().
   *
   *
   * See http://www.hakank.org/or-tools/traffic_lights.py
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("TrafficLights");

    //
    // data
    //
    int n = 4;

    int r = 0;
    int ry = 1;
    int g = 2;
    int y = 3;

    string[] lights = {"r", "ry", "g", "y"};

    // The allowed combinations
    IntTupleSet allowed = new IntTupleSet(4);
    allowed.InsertAll(new long[][] {
        new long[] {r,r,g,g},
        new long[] {ry,r,y,r},
        new long[] {g,g,r,r},
        new long[] {y,r,ry,r}});
    //
    // Decision variables
    //
    IntVar[] V = solver.MakeIntVarArray(n, 0, n-1, "V");
    IntVar[] P = solver.MakeIntVarArray(n, 0, n-1, "P");

    // for search
    IntVar[] VP = new IntVar[2 * n];
    for(int i = 0; i < n; i++) {
      VP[i] = V[i];
      VP[i+n] = P[i];
    }

    //
    // Constraints
    //
    for(int i = 0; i < n; i++) {
      int j = (1+i) % n;
      IntVar[] tmp = new IntVar[] {V[i],P[i],V[j],P[j]};
      solver.Add(tmp.AllowedAssignments(allowed));
    }

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(VP,
                                          Solver.CHOOSE_FIRST_UNBOUND,
                                          Solver.ASSIGN_MIN_VALUE);


    solver.NewSearch(db);

    while (solver.NextSolution()) {
      for(int i = 0; i < n; i++) {
        Console.Write("{0,2} {1,2} ",
                      lights[V[i].Value()],
                      lights[P[i].Value()]);
      }
      Console.WriteLine();
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    Solve();

  }
}