set_covering3.cs 3.47 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.IO;
using System.Text.RegularExpressions;
using Google.OrTools.ConstraintSolver;

public class SetCovering3
{

  /**
   *
   * Solves a set covering problem.
   * See  See http://www.hakank.org/or-tools/set_covering3.py
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("SetCovering3");

    //
    // data
    //

    // Set covering problem from
    // Katta G. Murty: 'Optimization Models for Decision Making',
    // page 302f
    // http://ioe.engin.umich.edu/people/fac/books/murty/opti_model/junior-7.pdf
    int num_groups = 6;
    int num_senators = 10;

    // which group does a senator belong to?
    int[,] belongs = {{1, 1, 1, 1, 1, 0, 0, 0, 0, 0},   // 1 southern
                       {0, 0, 0, 0, 0, 1, 1, 1, 1, 1},   // 2 northern
                       {0, 1, 1, 0, 0, 0, 0, 1, 1, 1},   // 3 liberals
                       {1, 0, 0, 0, 1, 1, 1, 0, 0, 0},   // 4 conservative
                       {0, 0, 1, 1, 1, 1, 1, 0, 1, 0},   // 5 democrats
                       {1, 1, 0, 0, 0, 0, 0, 1, 0, 1}};  // 6 republicans


    //
    // Decision variables
    //
    IntVar[] x = solver.MakeIntVarArray(num_senators, 0, 1, "x");
    // number of assigned senators, to be minimized
    IntVar z = x.Sum().Var();

    //
    // Constraints
    //

    // ensure that each group is covered by at least
    // one senator
    for(int i = 0; i < num_groups; i++) {
      IntVar[] b = new IntVar[num_senators];
      for(int j = 0; j < num_senators; j++) {
        b[j] = (x[j]*belongs[i,j]).Var();
      }
      solver.Add(b.Sum() >= 1);
    }


    //
    // objective
    //
    OptimizeVar objective = z.Minimize(1);


    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x,
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.INT_VALUE_DEFAULT);

    solver.NewSearch(db, objective);

    while (solver.NextSolution()) {
      Console.WriteLine("z: " + z.Value());
      Console.Write("x: ");
      for(int j = 0; j < num_senators; j++) {
        Console.Write(x[j].Value() + " ");
      }
      Console.WriteLine();

      // More details
      for(int j = 0; j < num_senators; j++) {
        if (x[j].Value() == 1) {
          Console.Write("Senator " + (1 + j) +
                           " belongs to these groups: ");
          for(int i = 0; i < num_groups; i++) {
            if (belongs[i,j] == 1) {
              Console.Write((1 + i) + " ");
            }
          }
          Console.WriteLine();
        }

      }

    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    Solve();
  }
}