cscvrptw.cs 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Sample showing how to model and solve a capacitated vehicle routing
///   problem with time windows using the swig-wrapped version of the vehicle
///   routing library in src/constraint_solver.
/// </summary>
public class CapacitatedVehicleRoutingProblemWithTimeWindows {

  /// <summary>
  ///   A position on the map with (x, y) coordinates.
  /// </summary>
  class Position {
    public Position() {
      this.x_ = 0;
      this.y_ = 0;
    }

    public Position(int x, int y) {
      this.x_ = x;
      this.y_ = y;
    }

    public int x_;
    public int y_;
  }

  /// <summary>
  ///    A time window with start/end data.
  /// </summary>
  class TimeWindow {
    public TimeWindow() {
      this.start_ = -1;
      this.end_ = -1;
    }

    public TimeWindow(int start, int end) {
      this.start_ = start;
      this.end_ = end;
    }

    public int start_;
    public int end_;
  }

  /// <summary>
  /// Manhattan distance implemented as a callback. It uses an array of
  ///   positions and computes the Manhattan distance between the two
  ///   positions of two different indices.
  /// </summary>
  class Manhattan {
    public Manhattan(
        RoutingIndexManager manager,
        Position[] locations,
        int coefficient) {
      this.manager_ = manager;
      this.locations_ = locations;
      this.coefficient_ = coefficient;
    }

    public long Call(long first_index, long second_index) {
      if (first_index >= locations_.Length ||
          second_index >= locations_.Length) {
        return 0;
      }
      int first_node = manager_.IndexToNode(first_index);
      int second_node = manager_.IndexToNode(second_index);
      return (Math.Abs(locations_[first_node].x_ -
                       locations_[second_node].x_) +
              Math.Abs(locations_[first_node].y_ -
                       locations_[second_node].y_)) * coefficient_;
    }

    private readonly RoutingIndexManager manager_;
    private readonly Position[] locations_;
    private readonly int coefficient_;
  };

  /// <summary>
  ///   A callback that computes the volume of a demand stored in an
  ///   integer array.
  /// </summary>
  class Demand {
    public Demand(
        RoutingIndexManager manager,
        int[] order_demands) {
      this.manager_ = manager;
      this.order_demands_ = order_demands;
    }

    public long Call(long index) {
      if (index < order_demands_.Length) {
        int node = manager_.IndexToNode(index);
        return order_demands_[node];
      }
      return 0;
    }

    private readonly RoutingIndexManager manager_;
    private readonly int[] order_demands_;
  };

  /// Locations representing either an order location or a vehicle route
  /// start/end.
  private Position[] locations_;
  /// Quantity to be picked up for each order.
  private int[] order_demands_;
  /// Time window in which each order must be performed.
  private TimeWindow[] order_time_windows_;
  /// Penalty cost "paid" for dropping an order.
  private int[] order_penalties_;
  /// Capacity of the vehicles.
  private int vehicle_capacity_ = 0;
  /// Latest time at which each vehicle must end its tour.
  private int[] vehicle_end_time_;
  /// Cost per unit of distance of each vehicle.
  private int[] vehicle_cost_coefficients_;
  /// Vehicle start and end indices. They have to be implemented as int[] due
  /// to the available SWIG-ed interface.
  private int[] vehicle_starts_;
  private int[] vehicle_ends_;

  /// Random number generator to produce data.
  private Random random_generator = new Random(0xBEEF);

  /// <summary>
  ///    Constructs a capacitated vehicle routing problem with time windows.
  /// </summary>
  private CapacitatedVehicleRoutingProblemWithTimeWindows() {}

  /// <summary>
  ///   Creates order data. Location of the order is random, as well
  ///   as its demand (quantity), time window and penalty.  ///
  ///   </summary>
  /// <param name="number_of_orders"> number of orders to build. </param>
  /// <param name="x_max"> maximum x coordinate in which orders are located.
  /// </param>
  /// <param name="y_max"> maximum y coordinate in which orders are located.
  /// </param>
  /// <param name="demand_max"> maximum quantity of a demand. </param>
  /// <param name="time_window_max"> maximum starting time of the order time
  /// window. </param>
  /// <param name="time_window_width"> duration of the order time window.
  /// </param>
  /// <param name="penalty_min"> minimum pernalty cost if order is dropped.
  /// </param>
  /// <param name="penalty_max"> maximum pernalty cost if order is dropped.
  /// </param>
  private void BuildOrders(int number_of_orders,
                           int number_of_vehicles,
                           int x_max, int y_max,
                           int demand_max,
                           int time_window_max,
                           int time_window_width,
                           int penalty_min,
                           int penalty_max) {
    Console.WriteLine("Building orders.");
    locations_ = new Position[number_of_orders + 2 * number_of_vehicles];
    order_demands_ = new int[number_of_orders];
    order_time_windows_ = new TimeWindow[number_of_orders];
    order_penalties_ = new int[number_of_orders];
    for (int order = 0; order < number_of_orders; ++order) {
      locations_[order] =
          new Position(random_generator.Next(x_max + 1),
                       random_generator.Next(y_max + 1));
      order_demands_[order] = random_generator.Next(demand_max + 1);
      int time_window_start = random_generator.Next(time_window_max + 1);
      order_time_windows_[order] =
          new TimeWindow(time_window_start,
                         time_window_start + time_window_width);
      order_penalties_[order] =
          random_generator.Next(penalty_max - penalty_min + 1) + penalty_min;
    }
  }

  /// <summary>
  /// Creates fleet data. Vehicle starting and ending locations are
  /// random, as well as vehicle costs per distance unit.
  /// </summary>
  ///
  /// <param name="number_of_orders"> number of orders</param>
  /// <param name="number_of_vehicles"> number of vehicles</param>
  /// <param name="x_max"> maximum x coordinate in which orders are located.
  /// </param>
  /// <param name="y_max"> maximum y coordinate in which orders are located.
  /// </param>
  /// <param name="end_time"> latest end time of a tour of a vehicle. </param>
  /// <param name="capacity"> capacity of a vehicle. </param>
  /// <param name="cost_coefficient_max"> maximum cost per distance unit of a
  /// vehicle (minimum is 1)</param>
  private void BuildFleet(int number_of_orders,
                          int number_of_vehicles,
                          int x_max, int y_max,
                          int end_time,
                          int capacity,
                          int cost_coefficient_max) {
    Console.WriteLine("Building fleet.");
    vehicle_capacity_ = capacity;
    vehicle_starts_ = new int[number_of_vehicles];
    vehicle_ends_ = new int[number_of_vehicles];
    vehicle_end_time_ = new int[number_of_vehicles];
    vehicle_cost_coefficients_ = new int[number_of_vehicles];
    for (int vehicle = 0; vehicle < number_of_vehicles; ++vehicle) {
      int index = 2 * vehicle + number_of_orders;
      vehicle_starts_[vehicle] = index;
      locations_[index] =
          new Position(random_generator.Next(x_max + 1),
                       random_generator.Next(y_max + 1));
      vehicle_ends_[vehicle] = index + 1;
      locations_[index + 1] =
          new Position(random_generator.Next(x_max + 1),
                       random_generator.Next(y_max + 1));
      vehicle_end_time_[vehicle] = end_time;
      vehicle_cost_coefficients_[vehicle] =
          random_generator.Next(cost_coefficient_max) + 1;
    }
  }

  /// <summary>
  ///   Solves the current routing problem.
  /// </summary>
  private void Solve(int number_of_orders, int number_of_vehicles) {
    Console.WriteLine("Creating model with " + number_of_orders +
                      " orders and " + number_of_vehicles + " vehicles.");
    // Finalizing model
    int number_of_locations = locations_.Length;

    RoutingIndexManager manager =
        new RoutingIndexManager(number_of_locations, number_of_vehicles,
                                vehicle_starts_, vehicle_ends_);
    RoutingModel model = new RoutingModel(manager);

    // Setting up dimensions
    const int big_number = 100000;
    Manhattan manhattan_callback = new Manhattan(manager, locations_, 1);
    model.AddDimension(
        model.RegisterTransitCallback(manhattan_callback.Call),
        big_number, big_number, false, "time");
    RoutingDimension time_dimension = model.GetDimensionOrDie("time");

    Demand demand_callback = new Demand(manager, order_demands_);
    model.AddDimension(model.RegisterUnaryTransitCallback(demand_callback.Call),
                       0, vehicle_capacity_, true, "capacity");
    RoutingDimension capacity_dimension = model.GetDimensionOrDie("capacity");

    // Setting up vehicles
    Manhattan[] cost_callbacks = new Manhattan[number_of_vehicles];
    for (int vehicle = 0; vehicle < number_of_vehicles; ++vehicle) {
      int cost_coefficient = vehicle_cost_coefficients_[vehicle];
      Manhattan manhattan_cost_callback =
          new Manhattan(manager, locations_, cost_coefficient);
      cost_callbacks[vehicle] = manhattan_cost_callback;
      int manhattan_cost_index =
          model.RegisterTransitCallback(manhattan_cost_callback.Call);
      model.SetArcCostEvaluatorOfVehicle(manhattan_cost_index, vehicle);
      time_dimension.CumulVar(model.End(vehicle)).SetMax(
          vehicle_end_time_[vehicle]);
    }

    // Setting up orders
    for (int order = 0; order < number_of_orders; ++order) {
      time_dimension.CumulVar(order).SetRange(order_time_windows_[order].start_,
                                              order_time_windows_[order].end_);
      long[] orders = {manager.NodeToIndex(order)};
      model.AddDisjunction(orders, order_penalties_[order]);
    }

    // Solving
    RoutingSearchParameters search_parameters =
        operations_research_constraint_solver.DefaultRoutingSearchParameters();
    search_parameters.FirstSolutionStrategy =
        FirstSolutionStrategy.Types.Value.AllUnperformed;

    Console.WriteLine("Search...");
    Assignment solution = model.SolveWithParameters(search_parameters);

    if (solution != null) {
      String output = "Total cost: " + solution.ObjectiveValue() + "\n";
      // Dropped orders
      String dropped = "";
      for (int order = 0; order < number_of_orders; ++order) {
        if (solution.Value(model.NextVar(order)) == order) {
          dropped += " " + order;
        }
      }
      if (dropped.Length > 0) {
        output += "Dropped orders:" + dropped + "\n";
      }
      // Routes
      for (int vehicle = 0; vehicle < number_of_vehicles; ++vehicle) {
        String route = "Vehicle " + vehicle + ": ";
        long order = model.Start(vehicle);
        if (model.IsEnd(solution.Value(model.NextVar(order)))) {
          route += "Empty";
        } else {
          for (;
               !model.IsEnd(order);
               order = solution.Value(model.NextVar(order))) {
            IntVar local_load = capacity_dimension.CumulVar(order);
            IntVar local_time = time_dimension.CumulVar(order);
            route += order + " Load(" + solution.Value(local_load) + ") " +
                "Time(" + solution.Min(local_time) + ", " +
                solution.Max(local_time) + ") -> ";
          }
          IntVar load = capacity_dimension.CumulVar(order);
          IntVar time = time_dimension.CumulVar(order);
          route += order + " Load(" + solution.Value(load) + ") " +
              "Time(" + solution.Min(time) + ", " + solution.Max(time) + ")";
        }
        output += route + "\n";
      }
      Console.WriteLine(output);
    }
  }


  public static void Main(String[] args)
  {
    CapacitatedVehicleRoutingProblemWithTimeWindows problem =
        new CapacitatedVehicleRoutingProblemWithTimeWindows();
    int x_max = 20;
    int y_max = 20;
    int demand_max = 3;
    int time_window_max = 24 * 60;
    int time_window_width = 4 * 60;
    int penalty_min = 50;
    int penalty_max = 100;
    int end_time = 24 * 60;
    int cost_coefficient_max = 3;

    int orders = 100;
    int vehicles = 20;
    int capacity = 50;

    problem.BuildOrders(orders,
                        vehicles,
                        x_max,
                        y_max,
                        demand_max,
                        time_window_max,
                        time_window_width,
                        penalty_min,
                        penalty_max);
    problem.BuildFleet(orders,
                       vehicles,
                       x_max,
                       y_max,
                       end_time,
                       capacity,
                       cost_coefficient_max);
    problem.Solve(orders, vehicles);
  }
}