3_jugs_regular.cs 8.16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.Linq;
using System.Diagnostics;
using Google.OrTools.ConstraintSolver;

public class ThreeJugsRegular
{


  /*
   * Global constraint regular
   *
   * This is a translation of MiniZinc's regular constraint (defined in
   * lib/zinc/globals.mzn), via the Comet code refered above.
   * All comments are from the MiniZinc code.
   * """
   * The sequence of values in array 'x' (which must all be in the range 1..S)
   * is accepted by the DFA of 'Q' states with input 1..S and transition
   * function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0'
   * (which must be in 1..Q) and accepting states 'F' (which all must be in
   * 1..Q).  We reserve state 0 to be an always failing state.
   * """
   *
   * x : IntVar array
   * Q : number of states
   * S : input_max
   * d : transition matrix
   * q0: initial state
   * F : accepting states
   *
   */
  static void MyRegular(Solver solver,
                        IntVar[] x,
                        int Q,
                        int S,
                        int[,] d,
                        int q0,
                        int[] F) {



    Debug.Assert(Q > 0, "regular: 'Q' must be greater than zero");
    Debug.Assert(S > 0, "regular: 'S' must be greater than zero");

    // d2 is the same as d, except we add one extra transition for
    // each possible input;  each extra transition is from state zero
    // to state zero.  This allows us to continue even if we hit a
    // non-accepted input.
    int[][] d2 = new int[Q+1][];
    for(int i = 0; i <= Q; i++) {
      int[] row = new int[S];
      for(int j = 0; j < S; j++) {
        if (i == 0) {
          row[j] = 0;
        } else {
          row[j] = d[i-1,j];
        }
      }
      d2[i] = row;
    }

    int[] d2_flatten = (from i in Enumerable.Range(0, Q+1)
                        from j in Enumerable.Range(0, S)
                        select d2[i][j]).ToArray();

    // If x has index set m..n, then a[m-1] holds the initial state
    // (q0), and a[i+1] holds the state we're in after processing
    // x[i].  If a[n] is in F, then we succeed (ie. accept the
    // string).
    int m = 0;
    int n = x.Length;

    IntVar[] a = solver.MakeIntVarArray(n+1-m, 0,Q+1, "a");
    // Check that the final state is in F
    solver.Add(a[a.Length-1].Member(F));
    // First state is q0
    solver.Add(a[m] == q0);

    for(int i = 0; i < n; i++) {
      solver.Add(x[i] >= 1);
      solver.Add(x[i] <= S);
      // Determine a[i+1]: a[i+1] == d2[a[i], x[i]]
      solver.Add(a[i+1] == d2_flatten.Element(((a[i]*S)+(x[i]-1))));

    }

  }




  /**
   *
   * 3 jugs problem using regular constraint in Google CP Solver.
   *
   * A.k.a. water jugs problem.
   *
   * Problem from Taha 'Introduction to Operations Research',
   * page 245f .
   *
   * For more info about the problem, see:
   * http://mathworld.wolfram.com/ThreeJugProblem.html
   *
   * This model use a regular constraint for handling the
   * transitions between the states. Instead of minimizing
   * the cost in a cost matrix (as shortest path problem),
   * we here call the model with increasing length of the
   * sequence array (x).
   *
   *
   * Also see http://www.hakank.org/or-tools/3_jugs_regular.py
   *
   */
  private static bool Solve(int n)
  {
    Solver solver = new Solver("ThreeJugProblem");

    //
    // Data
    //
    
    // the DFA (for regular)
    int n_states = 14;
    int input_max = 15;
    int initial_state = 1; // state 0 is for the failing state
    int[] accepting_states = {15};

    //
    // Manually crafted DFA
    // (from the adjacency matrix used in the other models)
    //
    /*
    int[,] transition_fn =  {
       // 1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      {0, 2, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0},  // 1
      {0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},  // 2
      {0, 0, 0, 4, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0},  // 3
      {0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},  // 4
      {0, 0, 0, 0, 0, 6, 0, 0, 9, 0, 0, 0, 0, 0, 0},  // 5
      {0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0},  // 6
      {0, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0},  // 7
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15}, // 8
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0}, // 9
      {0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0}, // 10
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0}, // 11
      {0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0}, // 12
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0}, // 13
      {0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15}, // 14
                                                        // 15
    };
    */

    //
    // However, the DFA is easy to create from adjacency lists.
    //
    int[][] states = {
      new int[] {2,9},  // state 1
      new int[] {3},    // state 2
      new int[] {4, 9}, // state 3
      new int[] {5},    // state 4
      new int[] {6,9},  // state 5
      new int[] {7},    // state 6
      new int[] {8,9},  // state 7
      new int[] {15},   // state 8
      new int[] {10},   // state 9
      new int[] {11},   // state 10
      new int[] {12},   // state 11
      new int[] {13},   // state 12
      new int[] {14},   // state 13
      new int[] {15}    // state 14
    };
    
    int[,] transition_fn = new int[n_states,input_max];
    for(int i = 0; i < n_states; i++) {
      for(int j = 1; j <= input_max; j++) {
        bool in_states = false;
        for(int s = 0; s < states[i].Length; s++) {
          if (j == states[i][s]) {
            in_states = true;
            break;
          }
        }
        if (in_states) {
          transition_fn[i,j-1] = j;
        } else {
          transition_fn[i,j-1] = 0;
        }
      }
    }

    //
    // The name of the nodes, for printing
    // the solution.
    //
    string[] nodes = {
      "8,0,0", // 1 start
      "5,0,3", // 2
      "5,3,0", // 3
      "2,3,3", // 4
      "2,5,1", // 5
      "7,0,1", // 6
      "7,1,0", // 7
      "4,1,3", // 8
      "3,5,0", // 9
      "3,2,3", // 10
      "6,2,0", // 11
      "6,0,2", // 12
      "1,5,2", // 13
      "1,4,3", // 14
      "4,4,0"  // 15 goal
    };

    //
    // Decision variables
    //

    // Note: We use 1..2 (instead of 0..1) and subtract 1 in the solution
    IntVar[] x = solver.MakeIntVarArray(n, 1, input_max, "x");


    //
    // Constraints
    //
    MyRegular(solver, x, n_states, input_max, transition_fn,
            initial_state, accepting_states);



    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x,
                                          Solver.CHOOSE_FIRST_UNBOUND,
                                          Solver.ASSIGN_MIN_VALUE);

    solver.NewSearch(db);

    bool found = false;
    while (solver.NextSolution()) {
      Console.WriteLine("\nFound a solution of length {0}", n+1);
      int[] x_val = new int[n];
      x_val[0] = 1;
      Console.WriteLine("{0} -> {1}", nodes[0], nodes[x_val[0]]);
      for(int i = 1; i < n; i++) {
        // Note: here we subtract 1 to get 0..1
        int val = (int)x[i].Value()-1;
        x_val[i] = val;
        Console.WriteLine("{0} -> {1}", nodes[x_val[i-1]], nodes[x_val[i]]);
      }
      Console.WriteLine();

      Console.WriteLine("\nSolutions: {0}", solver.Solutions());
      Console.WriteLine("WallTime: {0}ms", solver.WallTime());
      Console.WriteLine("Failures: {0}", solver.Failures());
      Console.WriteLine("Branches: {0} ", solver.Branches());
      
      found = true;

    }

    solver.EndSearch();

    return found;

  }

  public static void Main(String[] args)
  {
    
    for(int n = 1; n < 15; n++) {
      bool found = Solve(n);
      if (found) {
        break;
      }
    }
  }
}