strawberry_fields_with_column_generation.cc 25.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Demonstration of column generation using LP toolkit.
//
// Column generation is the technique of generating columns (aka
// resource bundles aka variables) of the constraint matrix
// incrementally guided by feedback from the constraint duals
// (cost-of-resources).  Frequently this lets one solve large problems
// efficiently, e.g. problems where the number of potential columns is
// exponentially large.
//
// Solves a covering problem taken from ITA Software recruiting web
// site:
//
// "Strawberries are growing in the cells of a rectangular field
// (grid). You want to build greenhouses to enclose the
// strawberries. Greenhouses are rectangular, axis-aligned with the
// field (i.e., not diagonal), and may not overlap. The cost of each
// greenhouse is $10 plus $1 per unit of area covered."
//
// Variables:
//
//    for each Box (greenhouse), continuous variable b{x1,y1,x2,y2} in [0,1]
//
// Constraints:
//
//   box limit:
//     sum b{x1,y1,x2,y2) <= MAX_BOXES
//   non-overlap (for each cell x,y):
//     sum b{x1,y1,x2,y2} <= 1     (summed over containing x1<=x<=x2, y1<=y<=y2)
//   coverage (for each cell x,y with a strawberry):
//     sum b{x1,y1,x2,y2} = 1      (summed over containing x1<=x<=x2, y1<=y<=y2)
//
// Since the number of possible boxes is O(d^4) where d is the linear
// dimension, starts from singleton column (box) covering entire grid,
// ensuring solvability.  Then iteratively the problem is solved and
// the constraint duals (aka reduced costs) used to guide the
// generation of a single new column (box), until convergence or a
// maximum number of iterations.
//
// No attempt is made to force integrality.

#include <cstdio>
#include <cstring>  // strlen
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/linear_solver/linear_solver.h"

DEFINE_bool(colgen_verbose, false, "print verbosely");
DEFINE_bool(colgen_complete, false, "generate all columns initially");
DEFINE_int32(colgen_max_iterations, 500, "max iterations");
DEFINE_string(colgen_solver, "glop", "solver - glop (default) or clp");
DEFINE_int32(colgen_instance, -1, "Which instance to solve (0 - 9)");

namespace operations_research {
// ---------- Data Instances ----------
struct Instance {
  int max_boxes;
  int width;
  int height;
  const char* grid;
};

Instance kInstances[] = {{4, 22, 6,
                          "..@@@@@..............."
                          "..@@@@@@........@@@..."
                          ".....@@@@@......@@@..."
                          ".......@@@@@@@@@@@@..."
                          ".........@@@@@........"
                          ".........@@@@@........"},
                         {3, 13, 10,
                          "............."
                          "............."
                          "............."
                          "...@@@@......"
                          "...@@@@......"
                          "...@@@@......"
                          ".......@@@..."
                          ".......@@@..."
                          ".......@@@..."
                          "............."},
                         {4, 13, 9,
                          "............."
                          "..@.@.@......"
                          "...@.@.@....."
                          "..@.@.@......"
                          "..@.@.@......"
                          "...@.@.@....."
                          "....@.@......"
                          "..........@@@"
                          "..........@@@"},
                         {4, 13, 9,
                          ".........@..."
                          ".........@..."
                          "@@@@@@@@@@..."
                          "..@......@..."
                          "..@......@..."
                          "..@......@..."
                          "..@@@@@@@@@@@"
                          "..@.........."
                          "..@.........."},
                         {7, 25, 14,
                          "........................."
                          "..@@@@@@@@@@@@@@@@@@@@..."
                          "..@@@@@@@@@@@@@@@@@@@@..."
                          "..@@.................@..."
                          "..@@.................@..."
                          "..@@.......@@@.......@.@."
                          "..@@.......@@@.......@..."
                          "..@@...@@@@@@@@@@@@@@@..."
                          "..@@...@@@@@@@@@@@@@@@..."
                          "..@@.......@@@.......@..."
                          "..@@.......@@@.......@..."
                          "..@@.................@..."
                          "..@@.................@..."
                          "........................."},
                         {6, 25, 16,
                          "........................."
                          "......@@@@@@@@@@@@@......"
                          "........................."
                          ".....@..........@........"
                          ".....@..........@........"
                          ".....@......@............"
                          ".....@......@.@@@@@@@...."
                          ".....@......@............"
                          ".....@......@.@@@@@@@...."
                          ".....@......@............"
                          "....@@@@....@............"
                          "....@@@@....@............"
                          "..@@@@@@....@............"
                          "..@@@.......@............"
                          "..@@@...................."
                          "..@@@@@@@@@@@@@@@@@@@@@@@"},
                         {5, 40, 18,
                          "........................................"
                          "........................................"
                          "...@@@@@@..............................."
                          "...@@@@@@..............................."
                          "...@@@@@@..............................."
                          "...@@@@@@.........@@@@@@@@@@............"
                          "...@@@@@@.........@@@@@@@@@@............"
                          "..................@@@@@@@@@@............"
                          "..................@@@@@@@@@@............"
                          ".............@@@@@@@@@@@@@@@............"
                          ".............@@@@@@@@@@@@@@@............"
                          "........@@@@@@@@@@@@...................."
                          "........@@@@@@@@@@@@...................."
                          "........@@@@@@.........................."
                          "........@@@@@@.........................."
                          "........................................"
                          "........................................"
                          "........................................"},
                         {8, 40, 18,
                          "........................................"
                          "..@@.@.@.@.............................."
                          "..@@.@.@.@...............@.............."
                          "..@@.@.@.@............@................."
                          "..@@.@.@.@.............................."
                          "..@@.@.@.@.................@............"
                          "..@@.@..................@..............."
                          "..@@.@.................................."
                          "..@@.@.................................."
                          "..@@.@................@@@@.............."
                          "..@@.@..............@@@@@@@@............"
                          "..@@.@.................................."
                          "..@@.@..............@@@@@@@@............"
                          "..@@.@.................................."
                          "..@@.@................@@@@.............."
                          "..@@.@.................................."
                          "..@@.@.................................."
                          "........................................"},
                         {10, 40, 19,
                          "@@@@@..................................."
                          "@@@@@..................................."
                          "@@@@@..................................."
                          "@@@@@..................................."
                          "@@@@@..................................."
                          "@@@@@...........@@@@@@@@@@@............."
                          "@@@@@...........@@@@@@@@@@@............."
                          "....................@@@@................"
                          "....................@@@@................"
                          "....................@@@@................"
                          "....................@@@@................"
                          "....................@@@@................"
                          "...............@@@@@@@@@@@@@@..........."
                          "...............@@@@@@@@@@@@@@..........."
                          ".......@@@@@@@@@@@@@@@@@@@@@@..........."
                          ".......@@@@@@@@@........................"
                          "........................................"
                          "........................................"
                          "........................................"},
                         {10, 40, 25,
                          "...................@...................."
                          "...............@@@@@@@@@................"
                          "............@@@.........@@@............."
                          "...........@...............@............"
                          "..........@.................@..........."
                          ".........@...................@.........."
                          ".........@...................@.........."
                          ".........@.....@@......@@....@.........."
                          "........@.....@@@@....@@@@....@........."
                          "........@.....................@........."
                          "........@.....................@........."
                          "........@..........@@.........@........."
                          ".......@@..........@@.........@@........"
                          "........@.....................@........."
                          "........@.....................@........."
                          "........@......@@@@@@@@@......@........."
                          "........@......@@@@@@@@@......@........."
                          ".........@...................@.........."
                          ".........@...................@.........."
                          ".........@...................@.........."
                          "..........@.................@..........."
                          "...........@...............@............"
                          "............@@@.........@@@............."
                          "...............@@@@@@@@@................"
                          "...................@...................."}};

const int kInstanceCount = 10;

// ---------- Box ---------

class Box {
 public:
  static const int kAreaCost = 1;
  static const int kFixedCost = 10;

  Box() {}
  Box(int x_min, int x_max, int y_min, int y_max)
      : x_min_(x_min), x_max_(x_max), y_min_(y_min), y_max_(y_max) {
    CHECK_GE(x_max, x_min);
    CHECK_GE(y_max, y_min);
  }

  int x_min() const { return x_min_; }
  int x_max() const { return x_max_; }
  int y_min() const { return y_min_; }
  int y_max() const { return y_max_; }

  // Lexicographic order
  int Compare(const Box& box) const {
    int c;
    if ((c = (x_min() - box.x_min())) != 0) return c;
    if ((c = (x_max() - box.x_max())) != 0) return c;
    if ((c = (y_min() - box.y_min())) != 0) return c;
    return y_max() - box.y_max();
  }

  bool Contains(int x, int y) const {
    return x >= x_min() && x <= x_max() && y >= y_min() && y <= y_max();
  }

  int Cost() const {
    return kAreaCost * (x_max() - x_min() + 1) * (y_max() - y_min() + 1) +
           kFixedCost;
  }

  std::string DebugString() const {
    return absl::StrFormat("[%d,%dx%d,%d]c%d", x_min(), y_min(), x_max(),
                           y_max(), Cost());
  }

 private:
  int x_min_;
  int x_max_;
  int y_min_;
  int y_max_;
};

struct BoxLessThan {
  bool operator()(const Box& b1, const Box& b2) const {
    return b1.Compare(b2) < 0;
  }
};

// ---------- Covering Problem ---------

class CoveringProblem {
 public:
  // Grid is a row-major string of length width*height with '@' for an
  // occupied cell (strawberry) and '.' for an empty cell.  Solver is
  // not owned.
  CoveringProblem(MPSolver* const solver, const Instance& instance)
      : solver_(solver),
        max_boxes_(instance.max_boxes),
        width_(instance.width),
        height_(instance.height),
        grid_(instance.grid) {}

  // Constructs initial variables and constraints.  Initial column
  // (box) covers entire grid, ensuring feasibility.
  bool Init() {
    // Check consistency.
    int size = strlen(grid_);
    if (size != area()) {
      return false;
    }
    for (int i = 0; i < size; ++i) {
      char c = grid_[i];
      if ((c != '@') && (c != '.')) return false;
    }

    AddCellConstraints();     // sum for every cell is <=1 or =1
    AddMaxBoxesConstraint();  // sum of box variables is <= max_boxes()
    if (!FLAGS_colgen_complete) {
      AddBox(Box(0, width() - 1, 0, height() - 1));  // grid-covering box
    } else {
      // Naive alternative to column generation - generate all boxes;
      // works fine for smaller problems, too slow for big.
      for (int y_min = 0; y_min < height(); ++y_min) {
        for (int y_max = y_min; y_max < height(); ++y_max) {
          for (int x_min = 0; x_min < width(); ++x_min) {
            for (int x_max = x_min; x_max < width(); ++x_max) {
              AddBox(Box(x_min, x_max, y_min, y_max));
            }
          }
        }
      }
    }
    return true;
  }

  int width() const { return width_; }
  int height() const { return height_; }
  int area() const { return width() * height(); }
  int max_boxes() const { return max_boxes_; }

  bool IsCellOccupied(int x, int y) const { return grid_[index(x, y)] == '@'; }

  // Calculates reduced costs for each possible Box and if any is
  // negative (improves cost), returns reduced cost and set target to
  // the most-negative (steepest descent) one - otherwise returns 0..
  //
  // For a problem in standard form 'minimize c*x s.t. Ax<=b, x>=0'
  // the reduced cost vector is c - transp(y) * A where y is the dual
  // cost column vector.
  //
  // For this covering problem, in which all coefficients in A are 0
  // or 1, this reduces to:
  //
  //   reduced_cost(box) =
  //
  //     box.Cost() - sum_{enclosed cell} cell_constraint->dual_value()
  //                - max_boxes_constraint_->dual_value()
  //
  // Since there are O(d^4) boxes, we don't also want O(d^2) sum for
  // each, so pre-calculate sums of cell duals for all rectangles with
  // upper-left at 0, 0, and use these to calculate the sum in
  // constant time using the standard inclusion-exclusion trick.
  double GetOptimalBox(Box* const target) {
    // Cost change threshold for new Box
    const double kCostChangeThreshold = -.01;

    // Precomputes the sum of reduced costs for every upper-left
    // rectangle.
    std::vector<double> upper_left_sums(area());
    ComputeUpperLeftSums(&upper_left_sums);

    const double max_boxes_dual = max_boxes_constraint_->dual_value();
    double best_reduced_cost = kCostChangeThreshold;
    Box best_box;
    for (int y_min = 0; y_min < height(); ++y_min) {
      for (int y_max = y_min; y_max < height(); ++y_max) {
        for (int x_min = 0; x_min < width(); ++x_min) {
          for (int x_max = x_min; x_max < width(); ++x_max) {
            Box box(x_min, x_max, y_min, y_max);
            const double cell_coverage_dual =  // inclusion-exclusion
                +zero_access(upper_left_sums, x_max, y_max) -
                zero_access(upper_left_sums, x_max, y_min - 1) -
                zero_access(upper_left_sums, x_min - 1, y_max) +
                zero_access(upper_left_sums, x_min - 1, y_min - 1);

            // All coefficients for new column are 1, so no need to
            // multiply constraint duals by any coefficients when
            // computing the reduced cost.
            const double reduced_cost =
                box.Cost() - (cell_coverage_dual + max_boxes_dual);

            if (reduced_cost < best_reduced_cost) {
              // Even with negative reduced cost, the box may already
              // exist, and even be basic (part of solution)!  This
              // counterintuitive situation is due to the problem's
              // many redundant linear equality constraints: many
              // steepest-edge pivot moves will be of zero-length.
              // Ideally one would want to check the length of the
              // move but that is difficult without access to the
              // internals of the solver (e.g., access to B^-1 in the
              // simplex algorithm).
              if (boxes_.find(box) == boxes_.end()) {
                best_reduced_cost = reduced_cost;
                best_box = box;
              }
            }
          }
        }
      }
    }

    if (best_reduced_cost < kCostChangeThreshold) {
      if (target) {
        *target = best_box;
      }
      return best_reduced_cost;
    }
    return 0;
  }

  // Add continuous [0,1] box variable with box.Cost() as objective
  // coefficient.  Add to cell constraint of all enclosed cells.
  MPVariable* AddBox(const Box& box) {
    CHECK(boxes_.find(box) == boxes_.end());
    MPVariable* const var = solver_->MakeNumVar(0., 1., box.DebugString());
    solver_->MutableObjective()->SetCoefficient(var, box.Cost());
    max_boxes_constraint_->SetCoefficient(var, 1.0);
    for (int y = box.y_min(); y <= box.y_max(); ++y) {
      for (int x = box.x_min(); x <= box.x_max(); ++x) {
        cell(x, y)->SetCoefficient(var, 1.0);
      }
    }
    boxes_[box] = var;
    return var;
  }

  std::string PrintGrid() const {
    std::string output =
        absl::StrFormat("width = %d, height = %d, max_boxes = %d\n", width_,
                        height_, max_boxes_);
    for (int y = 0; y < height_; ++y) {
      absl::StrAppendFormat(&output, "%s\n",
                            std::string(grid_ + width_ * y, width_));
    }
    return output;
  }

  // Prints covering - total cost, those variables with non-zero value,
  // and graphical depiction of covering using upper case letters for
  // integral coverage and lower case for coverage using combination
  // of fractional boxes.
  std::string PrintCovering() const {
    static const double kTolerance = 1e-5;
    std::string output =
        absl::StrFormat("cost = %f\n", solver_->Objective().Value());
    std::unique_ptr<char[]> display(new char[(width_ + 1) * height_ + 1]);
    for (int y = 0; y < height_; ++y) {
      memcpy(display.get() + y * (width_ + 1), grid_ + width_ * y,
             width_);  // Copy the original line.
      display[y * (width_ + 1) + width_] = '\n';
    }
    display[height_ * (width_ + 1)] = '\0';
    int active_box_index = 0;
    for (BoxTable::const_iterator i = boxes_.begin(); i != boxes_.end(); ++i) {
      const double value = i->second->solution_value();
      if (value > kTolerance) {
        const char box_character =
            (i->second->solution_value() >= (1. - kTolerance) ? 'A' : 'a') +
            active_box_index++;
        absl::StrAppendFormat(&output, "%c: box %s with value %f\n",
                              box_character, i->first.DebugString(), value);
        const Box& box = i->first;
        for (int x = box.x_min(); x <= box.x_max(); ++x) {
          for (int y = box.y_min(); y <= box.y_max(); ++y) {
            display[x + y * (width_ + 1)] = box_character;
          }
        }
      }
    }
    output.append(display.get());
    return output;
  }

 protected:
  int index(int x, int y) const { return width_ * y + x; }
  MPConstraint* cell(int x, int y) { return cells_[index(x, y)]; }
  const MPConstraint* cell(int x, int y) const { return cells_[index(x, y)]; }

  // Adds constraints that every cell is covered at most once, exactly
  // once if occupied.
  void AddCellConstraints() {
    cells_.resize(area());
    for (int y = 0; y < height(); ++y) {
      for (int x = 0; x < width(); ++x) {
        cells_[index(x, y)] =
            solver_->MakeRowConstraint(IsCellOccupied(x, y) ? 1. : 0., 1.);
      }
    }
  }

  // Adds constraint on maximum number of boxes used to cover.
  void AddMaxBoxesConstraint() {
    max_boxes_constraint_ = solver_->MakeRowConstraint(0., max_boxes());
  }

  // Gets 2d array element, returning 0 if out-of-bounds.
  double zero_access(const std::vector<double>& array, int x, int y) const {
    if (x < 0 || y < 0) {
      return 0;
    }
    return array[index(x, y)];
  }

  // Precomputes the sum of reduced costs for every upper-left
  // rectangle.
  void ComputeUpperLeftSums(std::vector<double>* upper_left_sums) const {
    for (int y = 0; y < height(); ++y) {
      for (int x = 0; x < width(); ++x) {
        upper_left_sums->operator[](index(x, y)) =
            cell(x, y)->dual_value() + zero_access(*upper_left_sums, x - 1, y) +
            zero_access(*upper_left_sums, x, y - 1) -
            zero_access(*upper_left_sums, x - 1, y - 1);
      }
    }
  }

  typedef std::map<Box, MPVariable*, BoxLessThan> BoxTable;
  MPSolver* const solver_;  // not owned
  const int max_boxes_;
  const int width_;
  const int height_;
  const char* const grid_;
  std::vector<MPConstraint*> cells_;
  BoxTable boxes_;
  MPConstraint* max_boxes_constraint_;
};

// ---------- Main Solve Method ----------

// Solves iteratively using delayed column generation, up to maximum
// number of steps.
void SolveInstance(const Instance& instance,
                   MPSolver::OptimizationProblemType solver_type) {
  // Prepares the solver.
  MPSolver solver("ColumnGeneration", solver_type);
  solver.SuppressOutput();
  solver.MutableObjective()->SetMinimization();

  // Construct problem.
  CoveringProblem problem(&solver, instance);
  CHECK(problem.Init());
  LOG(INFO) << "Initial problem:\n" << problem.PrintGrid();

  int step_number = 0;
  while (step_number < FLAGS_colgen_max_iterations) {
    if (FLAGS_colgen_verbose) {
      LOG(INFO) << "Step number " << step_number;
    }

    // Solve with existing columns.
    CHECK_EQ(MPSolver::OPTIMAL, solver.Solve());
    if (FLAGS_colgen_verbose) {
      LOG(INFO) << problem.PrintCovering();
    }

    // Find optimal new column to add, or stop if none.
    Box box;
    const double reduced_cost = problem.GetOptimalBox(&box);
    if (reduced_cost >= 0) {
      break;
    }

    // Add new column to problem.
    if (FLAGS_colgen_verbose) {
      LOG(INFO) << "Adding " << box.DebugString()
                << ", reduced_cost =" << reduced_cost;
    }
    problem.AddBox(box);

    ++step_number;
  }

  if (step_number >= FLAGS_colgen_max_iterations) {
    // Solve one last time with all generated columns.
    CHECK_EQ(MPSolver::OPTIMAL, solver.Solve());
  }

  LOG(INFO) << step_number << " columns added";
  LOG(INFO) << "Final coverage: " << problem.PrintCovering();
}
}  // namespace operations_research

int main(int argc, char** argv) {
  std::string usage = "column_generation\n";
  usage += "  --colgen_verbose             print verbosely\n";
  usage += "  --colgen_max_iterations <n>  max columns to generate\n";
  usage += "  --colgen_complete            generate all columns at start\n";

  gflags::ParseCommandLineFlags(&argc, &argv, true);

  operations_research::MPSolver::OptimizationProblemType solver_type;
  bool found = false;
#if defined(USE_CLP)
  if (FLAGS_colgen_solver == "clp") {
    solver_type = operations_research::MPSolver::CLP_LINEAR_PROGRAMMING;
    found = true;
  }
#endif  // USE_CLP
#if defined(USE_GLOP)
  if (FLAGS_colgen_solver == "glop") {
    solver_type = operations_research::MPSolver::GLOP_LINEAR_PROGRAMMING;
    found = true;
  }
#endif  // USE_GLOP
#if defined(USE_XPRESS)
  if (FLAGS_colgen_solver == "xpress") {
	  solver_type = operations_research::MPSolver::XPRESS_LINEAR_PROGRAMMING;
	  //solver_type = operations_research::MPSolver::CPLEX_LINEAR_PROGRAMMING;
	  found = true;
  }
#endif
#if defined(USE_CPLEX)
  if (FLAGS_colgen_solver == "cplex") {
	  solver_type = operations_research::MPSolver::CPLEX_LINEAR_PROGRAMMING;
	  found = true;
  }
#endif
  if (!found) {
    LOG(ERROR) << "Unknown solver " << FLAGS_colgen_solver;
    return 1;
  }

  LOG(INFO) << "Chosen solver: " << FLAGS_colgen_solver << std::endl;

  if (FLAGS_colgen_instance == -1) {
    for (int i = 0; i < operations_research::kInstanceCount; ++i) {
      const operations_research::Instance& instance =
          operations_research::kInstances[i];
      operations_research::SolveInstance(instance, solver_type);
    }
  } else {
    CHECK_GE(FLAGS_colgen_instance, 0);
    CHECK_LT(FLAGS_colgen_instance, operations_research::kInstanceCount);
    const operations_research::Instance& instance =
        operations_research::kInstances[FLAGS_colgen_instance];
    operations_research::SolveInstance(instance, solver_type);
  }
  return EXIT_SUCCESS;
}