fap_parser.h 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Reading and parsing the data of Frequency Assignment Problem
// Format: http://www.inra.fr/mia/T/schiex/Doc/CELAR.shtml#synt
//

#ifndef OR_TOOLS_EXAMPLES_FAP_PARSER_H_
#define OR_TOOLS_EXAMPLES_FAP_PARSER_H_

#include <map>
#include <string>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_split.h"
#include "ortools/base/file.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"

namespace operations_research {

// Takes a filename and a buffer and fills the lines buffer
// with the lines of the file corresponding to the filename.
void ParseFileByLines(const std::string& filename,
                      std::vector<std::string>* lines);

// The FapVariable struct represents a radio link of the
// frequency assignment problem.
struct FapVariable {
  FapVariable()
      : domain_index(-1),
        domain_size(0),
        domain(),
        degree(0),
        initial_position(-1),
        mobility_index(-1),
        mobility_cost(-1),
        hard(false) {}

  ~FapVariable() {}

  // Fields:
  // the index of a subset of all available frequencies of the instance
  int domain_index;

  // the number of the frequencies available for the link
  int domain_size;

  // the link's domain, i.e. a finite set of frequencies that can be
  // assigned to this link
  std::vector<int> domain;

  // the number of constraints in which the link appears
  int degree;

  // if positive, it means that the link has already been assigned a frequency
  // of that value
  int initial_position;

  // the index of mobility cost
  int mobility_index;

  // the cost of modification of a link's pre-assigned value
  int mobility_cost;

  // if true, it means that the link's pre-assigned position cannot be modified
  bool hard;
};

// The FapConstraint struct represents a constraint between two
// radio links of the frequency assignment problem.
struct FapConstraint {
  FapConstraint()
      : variable1(-1),
        variable2(-1),
        impact(0),
        type(""),
        operation(""),
        value(-1),
        weight_index(-1),
        weight_cost(-1),
        hard(false) {}
  ~FapConstraint() {}

  // Fields:
  // the index of the first variable appearing in the constraint
  int variable1;

  // the index of the second variable appearing in the constraint
  int variable2;

  // the importance of a constraint based on the degree of its variables,
  // the operator used in the constraint ("=" or ">") and whether it is a hard
  // or soft constraint and with what weight cost.
  // impact = (max_degree + min_degree + operator_impact + hardness_impact)
  int impact;

  // the constraint type (D (difference), C (viscosity), F (fixed),P (prefix)
  // or L (far fields)) which is not used in practice
  std::string type;

  // the operator used in the constraint ("=" or ">")
  std::string operation;

  // the constraint deviation: it defines the constant k12 mentioned in RLFAP
  // description
  int value;

  // the index of weight cost
  int weight_index;

  // the cost of not satisfaction of the constraint
  int weight_cost;

  // if true, it means that the constraint must be satisfied
  bool hard;
};

// The FapComponent struct represents an component of the RLFAP graph.
// It models an independent sub-problem of the initial instance.
struct FapComponent {
  FapComponent() : variables(), constraints() {}
  ~FapComponent() {}

  // Fields:
  // the variable set of the sub-problem, i.e. the vertices of the component
  std::map<int, FapVariable> variables;

  // the constraint set of the sub-problem, i.e. the edges of the component
  std::vector<FapConstraint> constraints;
};

// Parser of the var.txt file.
// This file describes all the variables in the instance.
// Each line corresponds to one variable.
class VariableParser {
 public:
  explicit VariableParser(const std::string& data_directory);
  ~VariableParser();

  const std::map<int, FapVariable>& variables() const { return variables_; }

  void Parse();

 private:
  const std::string filename_;
  // A map is used because in the model, the variables have ids which may not
  // be consecutive, may be very sparse and don't have a specific upper-bound.
  // The key of the map, is the link's id.
  std::map<int, FapVariable> variables_;

  DISALLOW_COPY_AND_ASSIGN(VariableParser);
};

// Parser of the dom.txt file.
// This file describes the domains used by the variables of the problem.
// Each line describes one domain.
class DomainParser {
 public:
  explicit DomainParser(const std::string& data_directory);
  ~DomainParser();

  const std::map<int, std::vector<int> >& domains() const { return domains_; }

  void Parse();

 private:
  const std::string filename_;
  // A map is used because in the model, the ids of the different available
  // domains may be random values, since they are used as names. The key of the
  // map is the subset's id.
  std::map<int, std::vector<int> > domains_;

  DISALLOW_COPY_AND_ASSIGN(DomainParser);
};

// Parse ctr.txt file.
// This file describes the constraints of the instance.
// Each line defines a binary constraint.
class ConstraintParser {
 public:
  explicit ConstraintParser(const std::string& data_directory);
  ~ConstraintParser();

  const std::vector<FapConstraint>& constraints() const { return constraints_; }

  void Parse();

 private:
  const std::string filename_;
  std::vector<FapConstraint> constraints_;

  DISALLOW_COPY_AND_ASSIGN(ConstraintParser);
};

// Parse cst.txt file.
// This file defines the criterion on which the solution will be based.
// It may also contain 8 coefficients: 4 for different constraint violation
// costs and 4 for different variable mobility costs.
class ParametersParser {
 public:
  explicit ParametersParser(const std::string& data_directory);
  ~ParametersParser();

  std::string objective() const { return objective_; }
  const std::vector<int>& constraint_weights() const {
    return constraint_weights_;
  }
  const std::vector<int>& variable_weights() const { return variable_weights_; }

  void Parse();

 private:
  const std::string filename_;
  static const int constraint_coefficient_no_ = 4;
  static const int variable_coefficient_no_ = 4;
  static const int coefficient_no_ = 8;
  std::string objective_;
  std::vector<int> constraint_weights_;
  std::vector<int> variable_weights_;
};

namespace {
int strtoint32(const std::string& word) {
  int result;
  CHECK(absl::SimpleAtoi(word, &result));
  return result;
}
}  // namespace

// Function that finds the disjoint sub-graphs of the graph of the instance.
void FindComponents(const std::vector<FapConstraint>& constraints,
                    const std::map<int, FapVariable>& variables,
                    const int maximum_variable_id,
                    absl::flat_hash_map<int, FapComponent>* components);

// Function that computes the impact of a constraint.
int EvaluateConstraintImpact(const std::map<int, FapVariable>& variables,
                             const int max_weight_cost,
                             const FapConstraint constraint);

// Function that parses an instance of frequency assignment problem.
void ParseInstance(const std::string& data_directory, bool find_components,
                   std::map<int, FapVariable>* variables,
                   std::vector<FapConstraint>* constraints,
                   std::string* objective, std::vector<int>* frequencies,
                   absl::flat_hash_map<int, FapComponent>* components);

void ParseFileByLines(const std::string& filename,
                      std::vector<std::string>* lines) {
  CHECK(lines != nullptr);
  std::string result;
  CHECK_OK(file::GetContents(filename, &result, file::Defaults()));
  *lines = absl::StrSplit(result, '\n', absl::SkipEmpty());
}

// VariableParser Implementation
VariableParser::VariableParser(const std::string& data_directory)
    : filename_(data_directory + "/var.txt") {}

VariableParser::~VariableParser() {}

void VariableParser::Parse() {
  std::vector<std::string> lines;
  ParseFileByLines(filename_, &lines);
  for (const std::string& line : lines) {
    std::vector<std::string> tokens =
        absl::StrSplit(line, ' ', absl::SkipEmpty());
    if (tokens.empty()) {
      continue;
    }
    CHECK_GE(tokens.size(), 2);

    FapVariable variable;
    variable.domain_index = strtoint32(tokens[1].c_str());
    if (tokens.size() > 3) {
      variable.initial_position = strtoint32(tokens[2].c_str());
      variable.mobility_index = strtoint32(tokens[3].c_str());
    }
    gtl::InsertOrUpdate(&variables_, strtoint32(tokens[0].c_str()), variable);
  }
}

// DomainParser Implementation
DomainParser::DomainParser(const std::string& data_directory)
    : filename_(data_directory + "/dom.txt") {}

DomainParser::~DomainParser() {}

void DomainParser::Parse() {
  std::vector<std::string> lines;
  ParseFileByLines(filename_, &lines);
  for (const std::string& line : lines) {
    std::vector<std::string> tokens =
        absl::StrSplit(line, ' ', absl::SkipEmpty());
    if (tokens.empty()) {
      continue;
    }
    CHECK_GE(tokens.size(), 2);

    const int key = strtoint32(tokens[0].c_str());

    std::vector<int> domain;
    domain.clear();
    for (int i = 2; i < tokens.size(); ++i) {
      domain.push_back(strtoint32(tokens[i].c_str()));
    }

    if (!domain.empty()) {
      gtl::InsertOrUpdate(&domains_, key, domain);
    }
  }
}

// ConstraintParser Implementation
ConstraintParser::ConstraintParser(const std::string& data_directory)
    : filename_(data_directory + "/ctr.txt") {}

ConstraintParser::~ConstraintParser() {}

void ConstraintParser::Parse() {
  std::vector<std::string> lines;
  ParseFileByLines(filename_, &lines);
  for (const std::string& line : lines) {
    std::vector<std::string> tokens =
        absl::StrSplit(line, ' ', absl::SkipEmpty());
    if (tokens.empty()) {
      continue;
    }
    CHECK_GE(tokens.size(), 5);

    FapConstraint constraint;
    constraint.variable1 = strtoint32(tokens[0].c_str());
    constraint.variable2 = strtoint32(tokens[1].c_str());
    constraint.type = tokens[2];
    constraint.operation = tokens[3];
    constraint.value = strtoint32(tokens[4].c_str());

    if (tokens.size() > 5) {
      constraint.weight_index = strtoint32(tokens[5].c_str());
    }
    constraints_.push_back(constraint);
  }
}

// ParametersParser Implementation
const int ParametersParser::constraint_coefficient_no_;
const int ParametersParser::variable_coefficient_no_;
const int ParametersParser::coefficient_no_;

ParametersParser::ParametersParser(const std::string& data_directory)
    : filename_(data_directory + "/cst.txt"),
      objective_(""),
      constraint_weights_(constraint_coefficient_no_, 0),
      variable_weights_(variable_coefficient_no_, 0) {}

ParametersParser::~ParametersParser() {}

void ParametersParser::Parse() {
  bool objective = true;
  bool largest_token = false;
  bool value_token = false;
  bool number_token = false;
  bool values_token = false;
  bool coefficient = false;
  std::vector<int> coefficients;
  std::vector<std::string> lines;

  ParseFileByLines(filename_, &lines);
  for (const std::string& line : lines) {
    if (objective) {
      largest_token =
          largest_token || (line.find("largest") != std::string::npos);
      value_token = value_token || (line.find("value") != std::string::npos);
      number_token = number_token || (line.find("number") != std::string::npos);
      values_token = values_token || (line.find("values") != std::string::npos);
      coefficient =
          coefficient || (line.find("coefficient") != std::string::npos);
    }

    if (coefficient) {
      CHECK_EQ(coefficient_no_,
               constraint_coefficient_no_ + variable_coefficient_no_);
      objective = false;
      if (line.find("=") != std::string::npos) {
        std::vector<std::string> tokens =
            absl::StrSplit(line, ' ', absl::SkipEmpty());
        CHECK_GE(tokens.size(), 3);
        coefficients.push_back(strtoint32(tokens[2].c_str()));
      }
    }
  }

  if (coefficient) {
    CHECK_EQ(coefficient_no_, coefficients.size());
    for (int i = 0; i < coefficient_no_; i++) {
      if (i < constraint_coefficient_no_) {
        constraint_weights_[i] = coefficients[i];
      } else {
        variable_weights_[i - constraint_coefficient_no_] = coefficients[i];
      }
    }
  }

  if (largest_token && value_token) {
    objective_ = "Minimize the largest assigned value.";
  } else if (number_token && values_token) {
    objective_ = "Minimize the number of assigned values.";
  } else {
    // Should not reach this point.
    LOG(WARNING) << "Cannot read the objective of the instance.";
  }
}

// TODO(user): Make FindComponents linear instead of quadratic.
void FindComponents(const std::vector<FapConstraint>& constraints,
                    const std::map<int, FapVariable>& variables,
                    const int maximum_variable_id,
                    absl::flat_hash_map<int, FapComponent>* components) {
  std::vector<int> in_component(maximum_variable_id + 1, -1);
  int constraint_index = 0;
  for (const FapConstraint& constraint : constraints) {
    const int variable_id1 = constraint.variable1;
    const int variable_id2 = constraint.variable2;
    const FapVariable& variable1 = gtl::FindOrDie(variables, variable_id1);
    const FapVariable& variable2 = gtl::FindOrDie(variables, variable_id2);
    CHECK_LT(variable_id1, in_component.size());
    CHECK_LT(variable_id2, in_component.size());
    if (in_component[variable_id1] < 0 && in_component[variable_id2] < 0) {
      // None of the variables belong to an existing component.
      // Create a new one.
      FapComponent component;
      const int component_index = constraint_index;
      gtl::InsertOrUpdate(&(component.variables), variable_id1, variable1);
      gtl::InsertOrUpdate(&(component.variables), variable_id2, variable2);
      in_component[variable_id1] = component_index;
      in_component[variable_id2] = component_index;
      component.constraints.push_back(constraint);
      gtl::InsertOrUpdate(components, component_index, component);
    } else if (in_component[variable_id1] >= 0 &&
               in_component[variable_id2] < 0) {
      // If variable1 belongs to an existing component, variable2 should
      // also be included in the same component.
      const int component_index = in_component[variable_id1];
      CHECK(gtl::ContainsKey(*components, component_index));
      gtl::InsertOrUpdate(&((*components)[component_index].variables),
                          variable_id2, variable2);
      in_component[variable_id2] = component_index;
      (*components)[component_index].constraints.push_back(constraint);
    } else if (in_component[variable_id1] < 0 &&
               in_component[variable_id2] >= 0) {
      // If variable2 belongs to an existing component, variable1 should
      // also be included in the same component.
      const int component_index = in_component[variable_id2];
      CHECK(gtl::ContainsKey(*components, component_index));
      gtl::InsertOrUpdate(&((*components)[component_index].variables),
                          variable_id1, variable1);
      in_component[variable_id1] = component_index;
      (*components)[component_index].constraints.push_back(constraint);
    } else {
      // The current constraint connects two different components.
      const int component_index1 = in_component[variable_id1];
      const int component_index2 = in_component[variable_id2];
      const int min_component_index =
          std::min(component_index1, component_index2);
      const int max_component_index =
          std::max(component_index1, component_index2);
      CHECK(gtl::ContainsKey(*components, min_component_index));
      CHECK(gtl::ContainsKey(*components, max_component_index));
      if (min_component_index != max_component_index) {
        // Update the component_index of maximum indexed component's variables.
        for (const auto& variable :
             (*components)[max_component_index].variables) {
          int variable_id = variable.first;
          in_component[variable_id] = min_component_index;
        }
        // Insert all the variables of the maximum indexed component to the
        // variables of the minimum indexed component.
        ((*components)[min_component_index])
            .variables.insert(
                ((*components)[max_component_index]).variables.begin(),
                ((*components)[max_component_index]).variables.end());
        // Insert all the constraints of the maximum indexed component to the
        // constraints of the minimum indexed component.
        ((*components)[min_component_index])
            .constraints.insert(
                ((*components)[min_component_index]).constraints.end(),
                ((*components)[max_component_index]).constraints.begin(),
                ((*components)[max_component_index]).constraints.end());
        (*components)[min_component_index].constraints.push_back(constraint);
        // Delete the maximum indexed component from the components set.
        components->erase(max_component_index);
      } else {
        // Both variables belong to the same component, just add the constraint.
        (*components)[min_component_index].constraints.push_back(constraint);
      }
    }
    constraint_index++;
  }
}

int EvaluateConstraintImpact(const std::map<int, FapVariable>& variables,
                             const int max_weight_cost,
                             const FapConstraint constraint) {
  const FapVariable& variable1 =
      gtl::FindOrDie(variables, constraint.variable1);
  const FapVariable& variable2 =
      gtl::FindOrDie(variables, constraint.variable2);
  const int degree1 = variable1.degree;
  const int degree2 = variable2.degree;
  const int max_degree = std::max(degree1, degree2);
  const int min_degree = std::min(degree1, degree2);
  const int operator_impact =
      constraint.operation == "=" ? max_degree : min_degree;
  const int kHardnessBias = 10;
  int hardness_impact = 0;
  if (constraint.hard) {
    hardness_impact = max_weight_cost > 0 ? kHardnessBias * max_weight_cost : 0;
  } else {
    hardness_impact = constraint.weight_cost;
  }
  return max_degree + min_degree + operator_impact + hardness_impact;
}

void ParseInstance(const std::string& data_directory, bool find_components,
                   std::map<int, FapVariable>* variables,
                   std::vector<FapConstraint>* constraints,
                   std::string* objective, std::vector<int>* frequencies,
                   absl::flat_hash_map<int, FapComponent>* components) {
  CHECK(variables != nullptr);
  CHECK(constraints != nullptr);
  CHECK(objective != nullptr);
  CHECK(frequencies != nullptr);

  // Parse the data files.
  VariableParser var(data_directory);
  var.Parse();
  *variables = var.variables();
  const int maximum_variable_id = variables->rbegin()->first;

  ConstraintParser ctr(data_directory);
  ctr.Parse();
  *constraints = ctr.constraints();

  DomainParser dom(data_directory);
  dom.Parse();

  ParametersParser cst(data_directory);
  cst.Parse();
  const int maximum_weight_cost = *std::max_element(
      (cst.constraint_weights()).begin(), (cst.constraint_weights()).end());

  // Make the variables of the instance.
  for (auto& it : *variables) {
    it.second.domain = gtl::FindOrDie(dom.domains(), it.second.domain_index);
    it.second.domain_size = it.second.domain.size();

    if ((it.second.mobility_index == -1) || (it.second.mobility_index == 0)) {
      it.second.mobility_cost = -1;
      if (it.second.initial_position != -1) {
        it.second.hard = true;
      }
    } else {
      it.second.mobility_cost =
          (cst.variable_weights())[it.second.mobility_index - 1];
    }
  }
  // Make the constraints of the instance.
  for (FapConstraint& ct : *constraints) {
    if ((ct.weight_index == -1) || (ct.weight_index == 0)) {
      ct.weight_cost = -1;
      ct.hard = true;
    } else {
      ct.weight_cost = (cst.constraint_weights())[ct.weight_index - 1];
      ct.hard = false;
    }
    ++((*variables)[ct.variable1]).degree;
    ++((*variables)[ct.variable2]).degree;
  }
  // Make the available frequencies of the instance.
  *frequencies = gtl::FindOrDie(dom.domains(), 0);
  // Make the objective of the instance.
  *objective = cst.objective();

  if (find_components) {
    CHECK(components != nullptr);
    FindComponents(*constraints, *variables, maximum_variable_id, components);
    // Evaluate each components's constraints impacts.
    for (auto& component : *components) {
      for (auto& constraint : component.second.constraints) {
        constraint.impact = EvaluateConstraintImpact(
            *variables, maximum_weight_cost, constraint);
      }
    }
  } else {
    for (FapConstraint& constraint : *constraints) {
      constraint.impact =
          EvaluateConstraintImpact(*variables, maximum_weight_cost, constraint);
    }
  }
}
}  // namespace operations_research
#endif  // OR_TOOLS_EXAMPLES_FAP_PARSER_H_