cvrptw_with_breaks.cc 9.59 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Capacitated Vehicle Routing Problem with Time Windows and Breaks.
// A description of the Capacitated Vehicle Routing Problem with Time Windows
// can be found here:
// http://en.wikipedia.org/wiki/Vehicle_routing_problem.
// The variant which is tackled by this model includes a capacity dimension,
// time windows and optional orders, with a penalty cost if orders are not
// performed. For the sake of simplicty, orders are randomly located and
// distances are computed using the Manhattan distance. Distances are assumed
// to be in meters and times in seconds.
// This variant also includes vehicle breaks which must happen during the day
// with two alternate breaks schemes: either a long break in the middle of the
// day or two smaller ones which can be taken during a longer period of the day.

#include <vector>

#include "absl/strings/str_cat.h"
#include "examples/cpp/cvrptw_lib.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"

using operations_research::ACMRandom;
using operations_research::Assignment;
using operations_research::DefaultRoutingSearchParameters;
using operations_research::FirstSolutionStrategy;
using operations_research::GetSeed;
using operations_research::IntervalVar;
using operations_research::LocationContainer;
using operations_research::RandomDemand;
using operations_research::RoutingDimension;
using operations_research::RoutingIndexManager;
using operations_research::RoutingModel;
using operations_research::RoutingNodeIndex;
using operations_research::RoutingSearchParameters;
using operations_research::ServiceTimePlusTransition;
using operations_research::Solver;

DEFINE_int32(vrp_orders, 100, "Nodes in the problem.");
DEFINE_int32(vrp_vehicles, 20, "Size of Traveling Salesman Problem instance.");
DEFINE_bool(vrp_use_deterministic_random_seed, false,
            "Use deterministic random seeds.");
DEFINE_string(routing_search_parameters, "",
              "Text proto RoutingSearchParameters (possibly partial) that will "
              "override the DefaultRoutingSearchParameters()");

const char* kTime = "Time";
const char* kCapacity = "Capacity";

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  CHECK_LT(0, FLAGS_vrp_orders) << "Specify an instance size greater than 0.";
  CHECK_LT(0, FLAGS_vrp_vehicles) << "Specify a non-null vehicle fleet size.";
  // VRP of size FLAGS_vrp_size.
  // Nodes are indexed from 0 to FLAGS_vrp_orders, the starts and ends of
  // the routes are at node 0.
  const RoutingIndexManager::NodeIndex kDepot(0);
  RoutingIndexManager manager(FLAGS_vrp_orders + 1, FLAGS_vrp_vehicles, kDepot);
  RoutingModel routing(manager);
  RoutingSearchParameters parameters = DefaultRoutingSearchParameters();
  CHECK(google::protobuf::TextFormat::MergeFromString(
      FLAGS_routing_search_parameters, &parameters));
  parameters.set_first_solution_strategy(
      FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION);

  // Setting up locations.
  const int64 kXMax = 100000;
  const int64 kYMax = 100000;
  const int64 kSpeed = 10;
  LocationContainer locations(kSpeed, FLAGS_vrp_use_deterministic_random_seed);
  for (int location = 0; location <= FLAGS_vrp_orders; ++location) {
    locations.AddRandomLocation(kXMax, kYMax);
  }

  // Setting the cost function.
  const int vehicle_cost =
      routing.RegisterTransitCallback([&locations, &manager](int64 i, int64 j) {
        return locations.ManhattanDistance(manager.IndexToNode(i),
                                           manager.IndexToNode(j));
      });
  routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);

  // Adding capacity dimension constraints.
  const int64 kVehicleCapacity = 40;
  const int64 kNullCapacitySlack = 0;
  RandomDemand demand(manager.num_nodes(), kDepot,
                      FLAGS_vrp_use_deterministic_random_seed);
  demand.Initialize();
  routing.AddDimension(
      routing.RegisterTransitCallback([&demand, &manager](int64 i, int64 j) {
        return demand.Demand(manager.IndexToNode(i), manager.IndexToNode(j));
      }),
      kNullCapacitySlack, kVehicleCapacity,
      /*fix_start_cumul_to_zero=*/true, kCapacity);

  // Adding time dimension constraints.
  const int64 kTimePerDemandUnit = 300;
  const int64 kHorizon = 24 * 3600;
  ServiceTimePlusTransition time(
      kTimePerDemandUnit,
      [&demand](RoutingNodeIndex i, RoutingNodeIndex j) {
        return demand.Demand(i, j);
      },
      [&locations](RoutingNodeIndex i, RoutingNodeIndex j) {
        return locations.ManhattanTime(i, j);
      });
  routing.AddDimension(
      routing.RegisterTransitCallback([&time, &manager](int64 i, int64 j) {
        return time.Compute(manager.IndexToNode(i), manager.IndexToNode(j));
      }),
      kHorizon, kHorizon, /*fix_start_cumul_to_zero=*/false, kTime);
  RoutingDimension* const time_dimension = routing.GetMutableDimension(kTime);

  // Adding time windows.
  ACMRandom randomizer(GetSeed(FLAGS_vrp_use_deterministic_random_seed));
  const int64 kTWDuration = 5 * 3600;
  for (int order = 1; order < manager.num_nodes(); ++order) {
    const int64 start = randomizer.Uniform(kHorizon - kTWDuration);
    time_dimension->CumulVar(order)->SetRange(start, start + kTWDuration);
    routing.AddToAssignment(time_dimension->SlackVar(order));
  }

  // Minimize time variables.
  for (int i = 0; i < routing.Size(); ++i) {
    routing.AddVariableMinimizedByFinalizer(time_dimension->CumulVar(i));
  }
  for (int j = 0; j < FLAGS_vrp_vehicles; ++j) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension->CumulVar(routing.Start(j)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension->CumulVar(routing.End(j)));
  }

  // Adding vehicle breaks:
  // - 40min breaks between 11:00am and 1:00pm
  // or
  // - 2 x 30min breaks between 10:00am and 3:00pm, at least 1h apart
  // First, fill service time vector.
  std::vector<int64> service_times(routing.Size());
  for (int node = 0; node < routing.Size(); node++) {
    if (node >= routing.nodes()) {
      service_times[node] = 0;
    } else {
      const RoutingIndexManager::NodeIndex index(node);
      service_times[node] = kTimePerDemandUnit * demand.Demand(index, index);
    }
  }
  const std::vector<std::vector<int>> break_data = {
      {/*start_min*/ 11, /*start_max*/ 13, /*duration*/ 2400},
      {/*start_min*/ 10, /*start_max*/ 15, /*duration*/ 1800},
      {/*start_min*/ 10, /*start_max*/ 15, /*duration*/ 1800}};
  Solver* const solver = routing.solver();
  for (int vehicle = 0; vehicle < FLAGS_vrp_vehicles; ++vehicle) {
    std::vector<IntervalVar*> breaks;
    for (int i = 0; i < break_data.size(); ++i) {
      IntervalVar* const break_interval = solver->MakeFixedDurationIntervalVar(
          break_data[i][0] * 3600, break_data[i][1] * 3600, break_data[i][2],
          true, absl::StrCat("Break ", i, " on vehicle ", vehicle));
      breaks.push_back(break_interval);
    }
    // break1 performed iff break2 performed
    solver->AddConstraint(solver->MakeEquality(breaks[1]->PerformedExpr(),
                                               breaks[2]->PerformedExpr()));
    // break2 start 1h after break1.
    solver->AddConstraint(solver->MakeIntervalVarRelationWithDelay(
        breaks[2], Solver::STARTS_AFTER_END, breaks[1], 3600));
    // break0 performed iff break2 unperformed
    solver->AddConstraint(solver->MakeNonEquality(breaks[0]->PerformedExpr(),
                                                  breaks[2]->PerformedExpr()));

    time_dimension->SetBreakIntervalsOfVehicle(std::move(breaks), vehicle,
                                               service_times);
  }

  // Adding penalty costs to allow skipping orders.
  const int64 kPenalty = 10000000;
  const RoutingIndexManager::NodeIndex kFirstNodeAfterDepot(1);
  for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
       order < routing.nodes(); ++order) {
    std::vector<int64> orders(1, manager.NodeToIndex(order));
    routing.AddDisjunction(orders, kPenalty);
  }

  // Solve, returns a solution if any (owned by RoutingModel).
  const Assignment* solution = routing.SolveWithParameters(parameters);
  if (solution != nullptr) {
    LOG(INFO) << "Breaks: ";
    for (const auto& break_interval :
         solution->IntervalVarContainer().elements()) {
      if (break_interval.PerformedValue() == 1) {
        LOG(INFO) << break_interval.Var()->name() << " "
                  << break_interval.DebugString();
      } else {
        LOG(INFO) << break_interval.Var()->name() << " unperformed";
      }
    }
    DisplayPlan(manager, routing, *solution, false, 0, 0,
                routing.GetDimensionOrDie(kCapacity),
                routing.GetDimensionOrDie(kTime));
  } else {
    LOG(INFO) << "No solution found.";
  }
  return EXIT_SUCCESS;
}