cvrptw_lib.h 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This header provides functions to help creating random instaces of the
// vehicle routing problem; random capacities and random time windows.
#ifndef OR_TOOLS_EXAMPLES_CVRPTW_LIB_H_
#define OR_TOOLS_EXAMPLES_CVRPTW_LIB_H_

#include <memory>
#include <set>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/constraint_solver/routing.h"

namespace operations_research {

typedef std::function<int64(RoutingNodeIndex, RoutingNodeIndex)>
    RoutingNodeEvaluator2;

// Random seed generator.
int32 GetSeed(bool deterministic);

// Location container, contains positions of orders and can be used to obtain
// Manhattan distances/times between locations.
class LocationContainer {
 public:
  LocationContainer(int64 speed, bool use_deterministic_seed);
  void AddLocation(int64 x, int64 y) { locations_.push_back(Location(x, y)); }
  void AddRandomLocation(int64 x_max, int64 y_max);
  void AddRandomLocation(int64 x_max, int64 y_max, int duplicates);
  int64 ManhattanDistance(RoutingIndexManager::NodeIndex from,
                          RoutingIndexManager::NodeIndex to) const;
  int64 NegManhattanDistance(RoutingIndexManager::NodeIndex from,
                             RoutingIndexManager::NodeIndex to) const;
  int64 ManhattanTime(RoutingIndexManager::NodeIndex from,
                      RoutingIndexManager::NodeIndex to) const;

  bool SameLocation(RoutingIndexManager::NodeIndex node1,
                    RoutingIndexManager::NodeIndex node2) const;
  int64 SameLocationFromIndex(int64 node1, int64 node2) const;

 private:
  class Location {
   public:
    Location();
    Location(int64 x, int64 y);
    int64 DistanceTo(const Location& location) const;
    bool IsAtSameLocation(const Location& location) const;

   private:
    static int64 Abs(int64 value);

    int64 x_;
    int64 y_;
  };

  MTRandom randomizer_;
  const int64 speed_;
  gtl::ITIVector<RoutingIndexManager::NodeIndex, Location> locations_;
};

// Random demand.
class RandomDemand {
 public:
  RandomDemand(int size, RoutingIndexManager::NodeIndex depot,
               bool use_deterministic_seed);
  void Initialize();
  int64 Demand(RoutingIndexManager::NodeIndex from,
               RoutingIndexManager::NodeIndex to) const;

 private:
  std::unique_ptr<int64[]> demand_;
  const int size_;
  const RoutingIndexManager::NodeIndex depot_;
  const bool use_deterministic_seed_;
};

// Service time (proportional to demand) + transition time callback.
class ServiceTimePlusTransition {
 public:
  ServiceTimePlusTransition(
      int64 time_per_demand_unit,
      RoutingNodeEvaluator2 demand,
      RoutingNodeEvaluator2 transition_time);
  int64 Compute(RoutingIndexManager::NodeIndex from,
                RoutingIndexManager::NodeIndex to) const;

 private:
  const int64 time_per_demand_unit_;
  RoutingNodeEvaluator2 demand_;
  RoutingNodeEvaluator2 transition_time_;
};

// Stop service time + transition time callback.
class StopServiceTimePlusTransition {
 public:
  StopServiceTimePlusTransition(
      int64 stop_time, const LocationContainer& location_container,
      RoutingNodeEvaluator2 transition_time);
  int64 Compute(RoutingIndexManager::NodeIndex from,
                RoutingIndexManager::NodeIndex to) const;

 private:
  const int64 stop_time_;
  const LocationContainer& location_container_;
  RoutingNodeEvaluator2 demand_;
  RoutingNodeEvaluator2 transition_time_;
};

// Route plan displayer.
// TODO(user): Move the display code to the routing library.
void DisplayPlan(
    const operations_research::RoutingIndexManager& manager,
    const operations_research::RoutingModel& routing,
    const operations_research::Assignment& plan, bool use_same_vehicle_costs,
    int64 max_nodes_per_group, int64 same_vehicle_cost,
    const operations_research::RoutingDimension& capacity_dimension,
    const operations_research::RoutingDimension& time_dimension);

using NodeIndex = RoutingIndexManager::NodeIndex;

int32 GetSeed(bool deterministic) {
  if (deterministic) {
    return ACMRandom::DeterministicSeed();
  } else {
    return ACMRandom::HostnamePidTimeSeed();
  }
}

LocationContainer::LocationContainer(int64 speed, bool use_deterministic_seed)
    : randomizer_(GetSeed(use_deterministic_seed)), speed_(speed) {
  CHECK_LT(0, speed_);
}

void LocationContainer::AddRandomLocation(int64 x_max, int64 y_max) {
  AddRandomLocation(x_max, y_max, 1);
}

void LocationContainer::AddRandomLocation(int64 x_max, int64 y_max,
                                          int duplicates) {
  const int64 x = randomizer_.Uniform(x_max + 1);
  const int64 y = randomizer_.Uniform(y_max + 1);
  for (int i = 0; i < duplicates; ++i) {
    AddLocation(x, y);
  }
}

int64 LocationContainer::ManhattanDistance(NodeIndex from, NodeIndex to) const {
  return locations_[from].DistanceTo(locations_[to]);
}

int64 LocationContainer::NegManhattanDistance(NodeIndex from,
                                              NodeIndex to) const {
  return -ManhattanDistance(from, to);
}

int64 LocationContainer::ManhattanTime(NodeIndex from, NodeIndex to) const {
  return ManhattanDistance(from, to) / speed_;
}

bool LocationContainer::SameLocation(NodeIndex node1, NodeIndex node2) const {
  if (node1 < locations_.size() && node2 < locations_.size()) {
    return locations_[node1].IsAtSameLocation(locations_[node2]);
  }
  return false;
}
int64 LocationContainer::SameLocationFromIndex(int64 node1, int64 node2) const {
  // The direct conversion from constraint model indices to routing model
  // nodes is correct because the depot is node 0.
  // TODO(user): Fetch proper indices from routing model.
  return SameLocation(NodeIndex(node1), NodeIndex(node2));
}

LocationContainer::Location::Location() : x_(0), y_(0) {}

LocationContainer::Location::Location(int64 x, int64 y) : x_(x), y_(y) {}

int64 LocationContainer::Location::DistanceTo(const Location& location) const {
  return Abs(x_ - location.x_) + Abs(y_ - location.y_);
}

bool LocationContainer::Location::IsAtSameLocation(
    const Location& location) const {
  return x_ == location.x_ && y_ == location.y_;
}

int64 LocationContainer::Location::Abs(int64 value) {
  return std::max(value, -value);
}

RandomDemand::RandomDemand(int size, NodeIndex depot,
                           bool use_deterministic_seed)
    : size_(size),
      depot_(depot),
      use_deterministic_seed_(use_deterministic_seed) {
  CHECK_LT(0, size_);
}

void RandomDemand::Initialize() {
  const int64 kDemandMax = 5;
  const int64 kDemandMin = 1;
  demand_ = absl::make_unique<int64[]>(size_);
  MTRandom randomizer(GetSeed(use_deterministic_seed_));
  for (int order = 0; order < size_; ++order) {
    if (order == depot_) {
      demand_[order] = 0;
    } else {
      demand_[order] =
          kDemandMin + randomizer.Uniform(kDemandMax - kDemandMin + 1);
    }
  }
}

int64 RandomDemand::Demand(NodeIndex from, NodeIndex /*to*/) const {
  return demand_[from.value()];
}

ServiceTimePlusTransition::ServiceTimePlusTransition(
    int64 time_per_demand_unit, RoutingNodeEvaluator2 demand,
    RoutingNodeEvaluator2 transition_time)
    : time_per_demand_unit_(time_per_demand_unit),
      demand_(std::move(demand)),
      transition_time_(std::move(transition_time)) {}

int64 ServiceTimePlusTransition::Compute(NodeIndex from, NodeIndex to) const {
  return time_per_demand_unit_ * demand_(from, to) + transition_time_(from, to);
}

StopServiceTimePlusTransition::StopServiceTimePlusTransition(
    int64 stop_time, const LocationContainer& location_container,
    RoutingNodeEvaluator2 transition_time)
    : stop_time_(stop_time),
      location_container_(location_container),
      transition_time_(std::move(transition_time)) {}

int64 StopServiceTimePlusTransition::Compute(NodeIndex from,
                                             NodeIndex to) const {
  return location_container_.SameLocation(from, to)
             ? 0
             : stop_time_ + transition_time_(from, to);
}

void DisplayPlan(
    const RoutingIndexManager& manager, const RoutingModel& routing,
    const operations_research::Assignment& plan, bool use_same_vehicle_costs,
    int64 max_nodes_per_group, int64 same_vehicle_cost,
    const operations_research::RoutingDimension& capacity_dimension,
    const operations_research::RoutingDimension& time_dimension) {
  // Display plan cost.
  std::string plan_output = absl::StrFormat("Cost %d\n", plan.ObjectiveValue());

  // Display dropped orders.
  std::string dropped;
  for (int64 order = 0; order < routing.Size(); ++order) {
    if (routing.IsStart(order) || routing.IsEnd(order)) continue;
    if (plan.Value(routing.NextVar(order)) == order) {
      if (dropped.empty()) {
        absl::StrAppendFormat(&dropped, " %d",
                              manager.IndexToNode(order).value());
      } else {
        absl::StrAppendFormat(&dropped, ", %d",
                              manager.IndexToNode(order).value());
      }
    }
  }
  if (!dropped.empty()) {
    plan_output += "Dropped orders:" + dropped + "\n";
  }

  if (use_same_vehicle_costs) {
    int group_size = 0;
    int64 group_same_vehicle_cost = 0;
    std::set<int> visited;
    for (int64 order = 0; order < routing.Size(); ++order) {
      if (routing.IsStart(order) || routing.IsEnd(order)) continue;
      ++group_size;
      visited.insert(plan.Value(routing.VehicleVar(order)));
      if (group_size == max_nodes_per_group) {
        if (visited.size() > 1) {
          group_same_vehicle_cost += (visited.size() - 1) * same_vehicle_cost;
        }
        group_size = 0;
        visited.clear();
      }
    }
    if (visited.size() > 1) {
      group_same_vehicle_cost += (visited.size() - 1) * same_vehicle_cost;
    }
    LOG(INFO) << "Same vehicle costs: " << group_same_vehicle_cost;
  }

  // Display actual output for each vehicle.
  for (int route_number = 0; route_number < routing.vehicles();
       ++route_number) {
    int64 order = routing.Start(route_number);
    absl::StrAppendFormat(&plan_output, "Route %d: ", route_number);
    if (routing.IsEnd(plan.Value(routing.NextVar(order)))) {
      plan_output += "Empty\n";
    } else {
      while (true) {
        operations_research::IntVar* const load_var =
            capacity_dimension.CumulVar(order);
        operations_research::IntVar* const time_var =
            time_dimension.CumulVar(order);
        operations_research::IntVar* const slack_var =
            routing.IsEnd(order) ? nullptr : time_dimension.SlackVar(order);
        if (slack_var != nullptr && plan.Contains(slack_var)) {
          absl::StrAppendFormat(
              &plan_output, "%d Load(%d) Time(%d, %d) Slack(%d, %d)",
              manager.IndexToNode(order).value(), plan.Value(load_var),
              plan.Min(time_var), plan.Max(time_var), plan.Min(slack_var),
              plan.Max(slack_var));
        } else {
          absl::StrAppendFormat(&plan_output, "%d Load(%d) Time(%d, %d)",
                                manager.IndexToNode(order).value(),
                                plan.Value(load_var), plan.Min(time_var),
                                plan.Max(time_var));
        }
        if (routing.IsEnd(order)) break;
        plan_output += " -> ";
        order = plan.Value(routing.NextVar(order));
      }
      plan_output += "\n";
    }
  }
  LOG(INFO) << plan_output;
}
}  // namespace operations_research

#endif  // OR_TOOLS_EXAMPLES_CVRPTW_LIB_H_