costas_array_sat.cc 9.82 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Costas Array Problem
//
// Finds an NxN matrix of 0s and 1s, with only one 1 per row,
// and one 1 per column, such that all displacement vectors
// between each pair of 1s are distinct.
//
// This example contains two separate implementations. CostasHard()
// uses hard constraints, whereas CostasSoft() uses a minimizer to
// minimize the number of duplicates.
#include <ctime>
#include <set>
#include <utility>

#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/random.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/model.h"

DEFINE_int32(minsize, 0, "Minimum problem size.");
DEFINE_int32(maxsize, 0, "Maximum problem size.");
DEFINE_int32(model, 1,
             "Model type: 1 integer variables hard, 2 boolean variables, 3 "
             "boolean_variable soft");
DEFINE_string(params, "", "Sat parameters.");

namespace operations_research {
namespace sat {

// Checks that all pairwise distances are unique and returns all violators
void CheckConstraintViolators(const std::vector<int64> &vars,
                              std::vector<int> *const violators) {
  int dim = vars.size();

  // Check that all indices are unique
  for (int i = 0; i < dim; ++i) {
    for (int k = i + 1; k < dim; ++k) {
      if (vars[i] == vars[k]) {
        violators->push_back(i);
        violators->push_back(k);
      }
    }
  }

  // Check that all differences are unique for each level
  for (int level = 1; level < dim; ++level) {
    for (int i = 0; i < dim - level; ++i) {
      const int difference = vars[i + level] - vars[i];

      for (int k = i + 1; k < dim - level; ++k) {
        if (difference == vars[k + level] - vars[k]) {
          violators->push_back(k + level);
          violators->push_back(k);
          violators->push_back(i + level);
          violators->push_back(i);
        }
      }
    }
  }
}

// Check that all pairwise differences are unique
bool CheckCostas(const std::vector<int64> &vars) {
  std::vector<int> violators;

  CheckConstraintViolators(vars, &violators);

  return violators.empty();
}

// Computes a Costas Array.
void CostasHard(const int dim) {
  CpModelBuilder cp_model;

  // create the variables
  std::vector<IntVar> vars;
  Domain domain(1, dim);
  for (int i = 0; i < dim; ++i) {
    vars.push_back(
        cp_model.NewIntVar(domain).WithName(absl::StrCat("var_", i)));
  }

  cp_model.AddAllDifferent(vars);

  // Check that the pairwise difference is unique
  for (int i = 1; i < dim; ++i) {
    std::vector<IntVar> subset;
    Domain diff(-dim, dim);

    for (int j = 0; j < dim - i; ++j) {
      subset.push_back(cp_model.NewIntVar(diff));
      cp_model.AddEquality(LinearExpr::Sum({subset[j], vars[j]}), vars[j + i]);
    }

    cp_model.AddAllDifferent(subset);
  }

  Model model;
  if (!FLAGS_params.empty()) {
    model.Add(NewSatParameters(FLAGS_params));
  }
  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  if (response.status() == CpSolverStatus::FEASIBLE) {
    std::vector<int64> costas_matrix;
    std::string output;

    for (int n = 0; n < dim; ++n) {
      const int64 v = SolutionIntegerValue(response, vars[n]);
      costas_matrix.push_back(v);
      absl::StrAppendFormat(&output, "%3lld", v);
    }

    LOG(INFO) << output << " (" << response.wall_time() << " s)";

    CHECK(CheckCostas(costas_matrix))
        << ": Solution is not a valid Costas Matrix.";
  } else {
    LOG(INFO) << "No solution found.";
  }
}

// Computes a Costas Array.
void CostasBool(const int dim) {
  CpModelBuilder cp_model;

  // create the variables
  std::vector<std::vector<BoolVar>> vars(dim);
  std::vector<std::vector<BoolVar>> transposed_vars(dim);
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      const BoolVar var = cp_model.NewBoolVar();
      vars[i].push_back(var);
      transposed_vars[j].push_back(var);
    }
  }

  for (int i = 0; i < dim; ++i) {
    cp_model.AddEquality(LinearExpr::BooleanSum(vars[i]), 1);
    cp_model.AddEquality(LinearExpr::BooleanSum(transposed_vars[i]), 1);
  }

  // Check that the pairwise difference is unique
  for (int step = 1; step < dim; ++step) {
    for (int diff = 1; diff < dim - 1; ++diff) {
      std::vector<BoolVar> positive_diffs;
      std::vector<BoolVar> negative_diffs;
      for (int var = 0; var < dim - step; ++var) {
        for (int value = 0; value < dim - diff; ++value) {
          const BoolVar pos = cp_model.NewBoolVar();
          const BoolVar neg = cp_model.NewBoolVar();
          positive_diffs.push_back(pos);
          negative_diffs.push_back(neg);
          cp_model.AddBoolOr({Not(vars[var][value]),
                              Not(vars[var + step][value + diff]), pos});
          cp_model.AddBoolOr({Not(vars[var][value + diff]),
                              Not(vars[var + step][value]), neg});
        }
      }
      cp_model.AddLessOrEqual(LinearExpr::BooleanSum(positive_diffs), 1);
      cp_model.AddLessOrEqual(LinearExpr::BooleanSum(negative_diffs), 1);
    }
  }

  Model model;
  if (!FLAGS_params.empty()) {
    model.Add(NewSatParameters(FLAGS_params));
  }
  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  if (response.status() == CpSolverStatus::FEASIBLE) {
    std::vector<int64> costas_matrix;
    std::string output;

    for (int n = 0; n < dim; ++n) {
      for (int v = 0; v < dim; ++v) {
        if (SolutionBooleanValue(response, vars[n][v])) {
          costas_matrix.push_back(v + 1);
          absl::StrAppendFormat(&output, "%3lld", v + 1);
          break;
        }
      }
    }

    LOG(INFO) << output << " (" << response.wall_time() << " s)";

    CHECK(CheckCostas(costas_matrix))
        << ": Solution is not a valid Costas Matrix.";
  } else {
    LOG(INFO) << "No solution found.";
  }
}

// Computes a Costas Array with a minimization objective.
void CostasBoolSoft(const int dim) {
  CpModelBuilder cp_model;

  // create the variables
  std::vector<std::vector<BoolVar>> vars(dim);
  std::vector<std::vector<BoolVar>> transposed_vars(dim);
  for (int i = 0; i < dim; ++i) {
    for (int j = 0; j < dim; ++j) {
      const BoolVar var = cp_model.NewBoolVar();
      vars[i].push_back(var);
      transposed_vars[j].push_back(var);
    }
  }

  for (int i = 0; i < dim; ++i) {
    cp_model.AddEquality(LinearExpr::BooleanSum(vars[i]), 1);
    cp_model.AddEquality(LinearExpr::BooleanSum(transposed_vars[i]), 1);
  }

  std::vector<IntVar> all_violations;
  // Check that the pairwise difference is unique
  for (int step = 1; step < dim; ++step) {
    for (int diff = 1; diff < dim - 1; ++diff) {
      std::vector<BoolVar> positive_diffs;
      std::vector<BoolVar> negative_diffs;
      for (int var = 0; var < dim - step; ++var) {
        for (int value = 0; value < dim - diff; ++value) {
          const BoolVar pos = cp_model.NewBoolVar();
          const BoolVar neg = cp_model.NewBoolVar();
          positive_diffs.push_back(pos);
          negative_diffs.push_back(neg);
          cp_model.AddBoolOr({Not(vars[var][value]),
                              Not(vars[var + step][value + diff]), pos});
          cp_model.AddBoolOr({Not(vars[var][value + diff]),
                              Not(vars[var + step][value]), neg});
        }
      }
      const IntVar pos_var =
          cp_model.NewIntVar(Domain(0, positive_diffs.size()));
      const IntVar neg_var =
          cp_model.NewIntVar(Domain(0, negative_diffs.size()));
      cp_model.AddGreaterOrEqual(
          pos_var, LinearExpr::BooleanSum(positive_diffs).AddConstant(-1));
      cp_model.AddGreaterOrEqual(
          neg_var, LinearExpr::BooleanSum(negative_diffs).AddConstant(-1));
      all_violations.push_back(pos_var);
      all_violations.push_back(neg_var);
    }
  }

  cp_model.Minimize(LinearExpr::Sum(all_violations));

  Model model;
  if (!FLAGS_params.empty()) {
    model.Add(NewSatParameters(FLAGS_params));
  }
  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  if (response.status() == CpSolverStatus::OPTIMAL) {
    std::vector<int64> costas_matrix;
    std::string output;

    for (int n = 0; n < dim; ++n) {
      for (int v = 0; v < dim; ++v) {
        if (SolutionBooleanValue(response, vars[n][v])) {
          costas_matrix.push_back(v + 1);
          absl::StrAppendFormat(&output, "%3lld", v + 1);
          break;
        }
      }
    }

    LOG(INFO) << output << " (" << response.wall_time() << " s)";

    CHECK(CheckCostas(costas_matrix))
        << ": Solution is not a valid Costas Matrix.";
  } else {
    LOG(INFO) << "No solution found.";
  }
}

}  // namespace sat
}  // namespace operations_research

int main(int argc, char **argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  int min = 1;
  int max = 10;

  if (FLAGS_minsize != 0) {
    min = FLAGS_minsize;

    if (FLAGS_maxsize != 0) {
      max = FLAGS_maxsize;
    } else {
      max = min;
    }
  }

  for (int size = min; size <= max; ++size) {
    LOG(INFO) << "Computing Costas Array for dim = " << size;
    if (FLAGS_model == 1) {
      operations_research::sat::CostasHard(size);
    } else if (FLAGS_model == 2) {
      operations_research::sat::CostasBool(size);
    } else if (FLAGS_model == 3) {
      operations_research::sat::CostasBoolSoft(size);
    }
  }

  return EXIT_SUCCESS;
}