pb_constraint.h 29.7 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_PB_CONSTRAINT_H_
#define OR_TOOLS_SAT_PB_CONSTRAINT_H_

#include <algorithm>
#include <limits>
#include <memory>
#include <string>
#include <vector>

#include "absl/container/flat_hash_map.h"
#include "absl/types/span.h"
#include "ortools/base/int_type.h"
#include "ortools/base/int_type_indexed_vector.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/bitset.h"
#include "ortools/util/stats.h"

namespace operations_research {
namespace sat {

// The type of the integer coefficients in a pseudo-Boolean constraint.
// This is also used for the current value of a constraint or its bounds.
DEFINE_INT_TYPE(Coefficient, int64);

// IMPORTANT: We can't use numeric_limits<Coefficient>::max() which will compile
// but just returns zero!!
const Coefficient kCoefficientMax(
    std::numeric_limits<Coefficient::ValueType>::max());

// Represents a term in a pseudo-Boolean formula.
struct LiteralWithCoeff {
  LiteralWithCoeff() {}
  LiteralWithCoeff(Literal l, Coefficient c) : literal(l), coefficient(c) {}
  LiteralWithCoeff(Literal l, int64 c) : literal(l), coefficient(c) {}
  Literal literal;
  Coefficient coefficient;
  bool operator==(const LiteralWithCoeff& other) const {
    return literal.Index() == other.literal.Index() &&
           coefficient == other.coefficient;
  }
};
inline std::ostream& operator<<(std::ostream& os, LiteralWithCoeff term) {
  os << term.coefficient << "[" << term.literal.DebugString() << "]";
  return os;
}

// Puts the given Boolean linear expression in canonical form:
// - Merge all the literal corresponding to the same variable.
// - Remove zero coefficients.
// - Make all the coefficients positive.
// - Sort the terms by increasing coefficient values.
//
// This function also computes:
//  - max_value: the maximum possible value of the formula.
//  - bound_shift: which allows to updates initial bounds. That is, if an
//    initial pseudo-Boolean constraint was
//      lhs < initial_pb_formula < rhs
//    then the new one is:
//      lhs + bound_shift < canonical_form < rhs + bound_shift
//
// Finally, this will return false, if some integer overflow or underflow
// occurred during the reduction to the canonical form.
bool ComputeBooleanLinearExpressionCanonicalForm(
    std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
    Coefficient* max_value);

// Maps all the literals of the given constraint using the given mapping. The
// mapping may map a literal index to kTrueLiteralIndex or kFalseLiteralIndex in
// which case the literal will be considered fixed to the appropriate value.
//
// Note that this function also canonicalizes the constraint and updates
// bound_shift and max_value like ComputeBooleanLinearExpressionCanonicalForm()
// does.
//
// Finally, this will return false if some integer overflow or underflow
// occurred during the constraint simplification.
bool ApplyLiteralMapping(
    const gtl::ITIVector<LiteralIndex, LiteralIndex>& mapping,
    std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
    Coefficient* max_value);

// From a constraint 'expr <= ub' and the result (bound_shift, max_value) of
// calling ComputeBooleanLinearExpressionCanonicalForm() on 'expr', this returns
// a new rhs such that 'canonical expression <= rhs' is an equivalent
// constraint. This function deals with all the possible overflow corner cases.
//
// The result will be in [-1, max_value] where -1 means unsatisfiable and
// max_value means trivialy satisfiable.
Coefficient ComputeCanonicalRhs(Coefficient upper_bound,
                                Coefficient bound_shift, Coefficient max_value);

// Same as ComputeCanonicalRhs(), but uses the initial constraint lower bound
// instead. From a constraint 'lb <= expression', this returns a rhs such that
// 'canonical expression with literals negated <= rhs'.
//
// Note that the range is also [-1, max_value] with the same meaning.
Coefficient ComputeNegatedCanonicalRhs(Coefficient lower_bound,
                                       Coefficient bound_shift,
                                       Coefficient max_value);

// Returns true iff the Boolean linear expression is in canonical form.
bool BooleanLinearExpressionIsCanonical(
    const std::vector<LiteralWithCoeff>& cst);

// Given a Boolean linear constraint in canonical form, simplify its
// coefficients using simple heuristics.
void SimplifyCanonicalBooleanLinearConstraint(
    std::vector<LiteralWithCoeff>* cst, Coefficient* rhs);

// Holds a set of boolean linear constraints in canonical form:
// - The constraint is a linear sum of LiteralWithCoeff <= rhs.
// - The linear sum satisfies the properties described in
//   ComputeBooleanLinearExpressionCanonicalForm().
//
// TODO(user): Simplify further the constraints.
//
// TODO(user): Remove the duplication between this and what the sat solver
// is doing in AddLinearConstraint() which is basically the same.
//
// TODO(user): Remove duplicate constraints? some problems have them, and
// this is not ideal for the symmetry computation since it leads to a lot of
// symmetries of the associated graph that are not useful.
class CanonicalBooleanLinearProblem {
 public:
  CanonicalBooleanLinearProblem() {}

  // Adds a new constraint to the problem. The bounds are inclusive.
  // Returns false in case of a possible overflow or if the constraint is
  // never satisfiable.
  //
  // TODO(user): Use a return status to distinguish errors if needed.
  bool AddLinearConstraint(bool use_lower_bound, Coefficient lower_bound,
                           bool use_upper_bound, Coefficient upper_bound,
                           std::vector<LiteralWithCoeff>* cst);

  // Getters. All the constraints are guaranteed to be in canonical form.
  int NumConstraints() const { return constraints_.size(); }
  const Coefficient Rhs(int i) const { return rhs_[i]; }
  const std::vector<LiteralWithCoeff>& Constraint(int i) const {
    return constraints_[i];
  }

 private:
  bool AddConstraint(const std::vector<LiteralWithCoeff>& cst,
                     Coefficient max_value, Coefficient rhs);

  std::vector<Coefficient> rhs_;
  std::vector<std::vector<LiteralWithCoeff>> constraints_;
  DISALLOW_COPY_AND_ASSIGN(CanonicalBooleanLinearProblem);
};

// Encode a constraint sum term <= rhs, where each term is a positive
// Coefficient times a literal. This class allows efficient modification of the
// constraint and is used during pseudo-Boolean resolution.
class MutableUpperBoundedLinearConstraint {
 public:
  // This must be called before any other functions is used with an higher
  // variable index.
  void ClearAndResize(int num_variables);

  // Reset the constraint to 0 <= 0.
  // Note that the contraint size stays the same.
  void ClearAll();

  // Returns the coefficient (>= 0) of the given variable.
  Coefficient GetCoefficient(BooleanVariable var) const {
    return AbsCoefficient(terms_[var]);
  }

  // Returns the literal under which the given variable appear in the
  // constraint. Note that if GetCoefficient(var) == 0 this just returns
  // Literal(var, true).
  Literal GetLiteral(BooleanVariable var) const {
    return Literal(var, terms_[var] > 0);
  }

  // If we have a lower bounded constraint sum terms >= rhs, then it is trivial
  // to see that the coefficient of any term can be reduced to rhs if it is
  // bigger. This does exactly this operation, but on the upper bounded
  // representation.
  //
  // If we take a constraint sum ci.xi <= rhs, take its negation and add max_sum
  // on both side, we have sum ci.(1 - xi) >= max_sum - rhs
  // So every ci > (max_sum - rhs) can be replacend by (max_sum - rhs).
  // Not that this operation also change the original rhs of the constraint.
  void ReduceCoefficients();

  // Same as ReduceCoefficients() but only consider the coefficient of the given
  // variable.
  void ReduceGivenCoefficient(BooleanVariable var) {
    const Coefficient bound = max_sum_ - rhs_;
    const Coefficient diff = GetCoefficient(var) - bound;
    if (diff > 0) {
      rhs_ -= diff;
      max_sum_ -= diff;
      terms_[var] = (terms_[var] > 0) ? bound : -bound;
    }
  }

  // Compute the constraint slack assuming that only the variables with index <
  // trail_index are assigned.
  Coefficient ComputeSlackForTrailPrefix(const Trail& trail,
                                         int trail_index) const;

  // Same as ReduceCoefficients() followed by ComputeSlackForTrailPrefix(). It
  // allows to loop only once over all the terms of the constraint instead of
  // doing it twice. This helps since doing that can be the main bottleneck.
  //
  // Note that this function assumes that the returned slack will be negative.
  // This allow to DCHECK some assumptions on what coefficients can be reduced
  // or not.
  //
  // TODO(user): Ideally the slack should be maitainable incrementally.
  Coefficient ReduceCoefficientsAndComputeSlackForTrailPrefix(
      const Trail& trail, int trail_index);

  // Relaxes the constraint so that:
  // - ComputeSlackForTrailPrefix(trail, trail_index) == target;
  // - All the variables that were propagated given the assignment < trail_index
  //   are still propagated.
  //
  // As a precondition, ComputeSlackForTrailPrefix(trail, trail_index) >= target
  // Note that nothing happen if the slack is already equals to target.
  //
  // Algorithm: Let diff = slack - target (>= 0). We will split the constraint
  // linear expression in 3 parts:
  // - P1: the true variables (only the one assigned < trail_index).
  // - P2: the other variables with a coeff > diff.
  //       Note that all these variables were the propagated ones.
  // - P3: the other variables with a coeff <= diff.
  // We can then transform P1 + P2 + P3 <= rhs_ into P1 + P2' <= rhs_ - diff
  // Where P2' is the same sum as P2 with all the coefficient reduced by diff.
  //
  // Proof: Given the old constraint, we want to show that the relaxed one is
  // always true. If all the variable in P2' are false, then
  // P1 <= rhs_ - slack <= rhs_ - diff is always true. If at least one of the
  // P2' variable is true, then P2 >= P2' + diff and we have
  // P1 + P2' + diff <= P1 + P2 <= rhs_.
  void ReduceSlackTo(const Trail& trail, int trail_index,
                     Coefficient initial_slack, Coefficient target);

  // Copies this constraint into a vector<LiteralWithCoeff> representation.
  void CopyIntoVector(std::vector<LiteralWithCoeff>* output);

  // Adds a non-negative value to this constraint Rhs().
  void AddToRhs(Coefficient value) {
    CHECK_GE(value, 0);
    rhs_ += value;
  }
  Coefficient Rhs() const { return rhs_; }
  Coefficient MaxSum() const { return max_sum_; }

  // Adds a term to this constraint. This is in the .h for efficiency.
  // The encoding used internally is described below in the terms_ comment.
  void AddTerm(Literal literal, Coefficient coeff) {
    CHECK_GT(coeff, 0);
    const BooleanVariable var = literal.Variable();
    const Coefficient term_encoding = literal.IsPositive() ? coeff : -coeff;
    if (literal != GetLiteral(var)) {
      // The two terms are of opposite sign, a "cancelation" happens.
      // We need to change the encoding of the lower magnitude term.
      // - If term > 0, term . x       -> term . (x - 1) + term
      // - If term < 0, term . (x - 1) -> term . x       - term
      // In both cases, rhs -= abs(term).
      rhs_ -= std::min(coeff, AbsCoefficient(terms_[var]));
      max_sum_ += AbsCoefficient(term_encoding + terms_[var]) -
                  AbsCoefficient(terms_[var]);
    } else {
      // Both terms are of the same sign (or terms_[var] is zero).
      max_sum_ += coeff;
    }
    CHECK_GE(max_sum_, 0) << "Overflow";
    terms_[var] += term_encoding;
    non_zeros_.Set(var);
  }

  // Returns the "cancelation" amount of AddTerm(literal, coeff).
  Coefficient CancelationAmount(Literal literal, Coefficient coeff) const {
    DCHECK_GT(coeff, 0);
    const BooleanVariable var = literal.Variable();
    if (literal == GetLiteral(var)) return Coefficient(0);
    return std::min(coeff, AbsCoefficient(terms_[var]));
  }

  // Returns a set of positions that contains all the non-zeros terms of the
  // constraint. Note that this set can also contains some zero terms.
  const std::vector<BooleanVariable>& PossibleNonZeros() const {
    return non_zeros_.PositionsSetAtLeastOnce();
  }

  // Returns a string representation of the constraint.
  std::string DebugString();

 private:
  Coefficient AbsCoefficient(Coefficient a) const { return a > 0 ? a : -a; }

  // Only used for DCHECK_EQ(max_sum_, ComputeMaxSum());
  Coefficient ComputeMaxSum() const;

  // The encoding is special:
  // - If terms_[x] > 0, then the associated term is 'terms_[x] . x'
  // - If terms_[x] < 0, then the associated term is 'terms_[x] . (x - 1)'
  gtl::ITIVector<BooleanVariable, Coefficient> terms_;

  // The right hand side of the constraint (sum terms <= rhs_).
  Coefficient rhs_;

  // The constraint maximum sum (i.e. sum of the absolute term coefficients).
  // Note that checking the integer overflow on this sum is enough.
  Coefficient max_sum_;

  // Contains the possibly non-zeros terms_ value.
  SparseBitset<BooleanVariable> non_zeros_;
};

// A simple "helper" class to enqueue a propagated literal on the trail and
// keep the information needed to explain it when requested.
class UpperBoundedLinearConstraint;

struct PbConstraintsEnqueueHelper {
  void Enqueue(Literal l, int source_trail_index,
               UpperBoundedLinearConstraint* ct, Trail* trail) {
    reasons[trail->Index()] = {source_trail_index, ct};
    trail->Enqueue(l, propagator_id);
  }

  // The propagator id of PbConstraints.
  int propagator_id;

  // A temporary vector to store the last conflict.
  std::vector<Literal> conflict;

  // Information needed to recover the reason of an Enqueue().
  // Indexed by trail_index.
  struct ReasonInfo {
    int source_trail_index;
    UpperBoundedLinearConstraint* pb_constraint;
  };
  std::vector<ReasonInfo> reasons;
};

// This class contains half the propagation logic for a constraint of the form
//
//   sum ci * li <= rhs, ci positive coefficients, li literals.
//
// The other half is implemented by the PbConstraints class below which takes
// care of updating the 'threshold' value of this constraint:
//  - 'slack' is rhs minus all the ci of the variables xi assigned to
//    true. Note that it is not updated as soon as xi is assigned, but only
//    later when this assignment is "processed" by the PbConstraints class.
//  - 'threshold' is the distance from 'slack' to the largest coefficient ci
//    smaller or equal to slack. By definition, all the literals with
//    even larger coefficients that are yet 'processed' must be false for the
//    constraint to be satisfiable.
class UpperBoundedLinearConstraint {
 public:
  // Takes a pseudo-Boolean formula in canonical form.
  explicit UpperBoundedLinearConstraint(
      const std::vector<LiteralWithCoeff>& cst);

  // Returns true if the given terms are the same as the one in this constraint.
  bool HasIdenticalTerms(const std::vector<LiteralWithCoeff>& cst);
  Coefficient Rhs() const { return rhs_; }

  // Sets the rhs of this constraint. Compute the initial threshold value using
  // only the literal with a trail index smaller than the given one. Enqueues on
  // the trail any propagated literals.
  //
  // Returns false if the preconditions described in
  // PbConstraints::AddConstraint() are not meet.
  bool InitializeRhs(Coefficient rhs, int trail_index, Coefficient* threshold,
                     Trail* trail, PbConstraintsEnqueueHelper* helper);

  // Tests for propagation and enqueues propagated literals on the trail.
  // Returns false if a conflict was detected, in which case conflict is filled.
  //
  // Preconditions:
  // - For each "processed" literal, the given threshold value must have been
  //   decreased by its associated coefficient in the constraint. It must now
  //   be stricly negative.
  // - The given trail_index is the index of a true literal in the trail which
  //   just caused threshold to become stricly negative. All literals with
  //   smaller index must have been "processed". All assigned literals with
  //   greater trail index are not yet "processed".
  //
  // The threshold is updated to its new value.
  bool Propagate(int trail_index, Coefficient* threshold, Trail* trail,
                 PbConstraintsEnqueueHelper* helper);

  // Updates the given threshold and the internal state. This is the opposite of
  // Propagate(). Each time a literal in unassigned, the threshold value must
  // have been increased by its coefficient. This update the threshold to its
  // new value.
  void Untrail(Coefficient* threshold, int trail_index);

  // Provided that the literal with given source_trail_index was the one that
  // propagated the conflict or the literal we wants to explain, then this will
  // compute the reason.
  //
  // Some properties of the reason:
  // - Literals of level 0 are removed.
  // - It will always contain the literal with given source_trail_index (except
  //   if it is of level 0).
  // - We make the reason more compact by greedily removing terms with small
  //   coefficients that would not have changed the propagation.
  //
  // TODO(user): Maybe it is possible to derive a better reason by using more
  // information. For instance one could use the mask of literals that are
  // better to use during conflict minimization (namely the one already in the
  // 1-UIP conflict).
  void FillReason(const Trail& trail, int source_trail_index,
                  BooleanVariable propagated_variable,
                  std::vector<Literal>* reason);

  // Same operation as SatSolver::ResolvePBConflict(), the only difference is
  // that here the reason for var is *this.
  void ResolvePBConflict(const Trail& trail, BooleanVariable var,
                         MutableUpperBoundedLinearConstraint* conflict,
                         Coefficient* conflict_slack);

  // Adds this pb constraint into the given mutable one.
  //
  // TODO(user): Provides instead an easy to use iterator over an
  // UpperBoundedLinearConstraint and move this function to
  // MutableUpperBoundedLinearConstraint.
  void AddToConflict(MutableUpperBoundedLinearConstraint* conflict);

  // Compute the sum of the "cancelation" in AddTerm() if *this is added to
  // the given conflict. The sum doesn't take into account literal assigned with
  // a trail index smaller than the given one.
  //
  // Note(user): Currently, this is only used in DCHECKs.
  Coefficient ComputeCancelation(
      const Trail& trail, int trail_index,
      const MutableUpperBoundedLinearConstraint& conflict);

  // API to mark a constraint for deletion before actually deleting it.
  void MarkForDeletion() { is_marked_for_deletion_ = true; }
  bool is_marked_for_deletion() const { return is_marked_for_deletion_; }

  // Only learned constraints are considered for deletion during the constraint
  // cleanup phase. We also can't delete variables used as a reason.
  void set_is_learned(bool is_learned) { is_learned_ = is_learned; }
  bool is_learned() const { return is_learned_; }
  bool is_used_as_a_reason() const { return first_reason_trail_index_ != -1; }

  // Activity of the constraint. Only low activity constraint will be deleted
  // during the constraint cleanup phase.
  void set_activity(double activity) { activity_ = activity; }
  double activity() const { return activity_; }

  // Returns a fingerprint of the constraint linear expression (without rhs).
  // This is used for duplicate detection.
  int64 hash() const { return hash_; }

  // This is used to get statistics of the number of literals inspected by
  // a Propagate() call.
  int already_propagated_end() const { return already_propagated_end_; }

 private:
  Coefficient GetSlackFromThreshold(Coefficient threshold) {
    return (index_ < 0) ? threshold : coeffs_[index_] + threshold;
  }
  void Update(Coefficient slack, Coefficient* threshold) {
    *threshold = (index_ < 0) ? slack : slack - coeffs_[index_];
    already_propagated_end_ = starts_[index_ + 1];
  }

  // Constraint management fields.
  // TODO(user): Rearrange and specify bit size to minimize memory usage.
  bool is_marked_for_deletion_;
  bool is_learned_;
  int first_reason_trail_index_;
  double activity_;

  // Constraint propagation fields.
  int index_;
  int already_propagated_end_;

  // In the internal representation, we merge the terms with the same
  // coefficient.
  // - literals_ contains all the literal of the constraint sorted by
  //   increasing coefficients.
  // - coeffs_ contains unique increasing coefficients.
  // - starts_[i] is the index in literals_ of the first literal with
  //   coefficient coeffs_[i].
  std::vector<Coefficient> coeffs_;
  std::vector<int> starts_;
  std::vector<Literal> literals_;
  Coefficient rhs_;

  int64 hash_;
};

// Class responsible for managing a set of pseudo-Boolean constraints and their
// propagation.
class PbConstraints : public SatPropagator {
 public:
  explicit PbConstraints(Model* model)
      : SatPropagator("PbConstraints"),
        conflicting_constraint_index_(-1),
        num_learned_constraint_before_cleanup_(0),
        constraint_activity_increment_(1.0),
        parameters_(model->GetOrCreate<SatParameters>()),
        stats_("PbConstraints"),
        num_constraint_lookups_(0),
        num_inspected_constraint_literals_(0),
        num_threshold_updates_(0) {
    model->GetOrCreate<Trail>()->RegisterPropagator(this);
  }
  ~PbConstraints() override {
    IF_STATS_ENABLED({
      LOG(INFO) << stats_.StatString();
      LOG(INFO) << "num_constraint_lookups_: " << num_constraint_lookups_;
      LOG(INFO) << "num_threshold_updates_: " << num_threshold_updates_;
    });
  }

  bool Propagate(Trail* trail) final;
  void Untrail(const Trail& trail, int trail_index) final;
  absl::Span<const Literal> Reason(const Trail& trail,
                                   int trail_index) const final;

  // Changes the number of variables.
  void Resize(int num_variables) {
    // Note that we avoid using up memory in the common case where there are no
    // pb constraints at all. If there is 10 million variables, this vector
    // alone will take 480 MB!
    if (!constraints_.empty()) {
      to_update_.resize(num_variables << 1);
      enqueue_helper_.reasons.resize(num_variables);
    }
  }

  // Adds a constraint in canonical form to the set of managed constraints. Note
  // that this detects constraints with exactly the same terms. In this case,
  // the constraint rhs is updated if the new one is lower or nothing is done
  // otherwise.
  //
  // There are some preconditions, and the function will return false if they
  // are not met. The constraint can be added when the trail is not empty,
  // however given the current propagated assignment:
  // - The constraint cannot be conflicting.
  // - The constraint cannot have propagated at an earlier decision level.
  bool AddConstraint(const std::vector<LiteralWithCoeff>& cst, Coefficient rhs,
                     Trail* trail);

  // Same as AddConstraint(), but also marks the added constraint as learned
  // so that it can be deleted during the constraint cleanup phase.
  bool AddLearnedConstraint(const std::vector<LiteralWithCoeff>& cst,
                            Coefficient rhs, Trail* trail);

  // Returns the number of constraints managed by this class.
  int NumberOfConstraints() const { return constraints_.size(); }

  // ConflictingConstraint() returns the last PB constraint that caused a
  // conflict. Calling ClearConflictingConstraint() reset this to nullptr.
  //
  // TODO(user): This is a hack to get the PB conflict, because the rest of
  // the solver API assume only clause conflict. Find a cleaner way?
  void ClearConflictingConstraint() { conflicting_constraint_index_ = -1; }
  UpperBoundedLinearConstraint* ConflictingConstraint() {
    if (conflicting_constraint_index_ == -1) return nullptr;
    return constraints_[conflicting_constraint_index_.value()].get();
  }

  // Returns the underlying UpperBoundedLinearConstraint responsible for
  // assigning the literal at given trail index.
  UpperBoundedLinearConstraint* ReasonPbConstraint(int trail_index) const;

  // Activity update functions.
  // TODO(user): Remove duplication with other activity update functions.
  void BumpActivity(UpperBoundedLinearConstraint* constraint);
  void RescaleActivities(double scaling_factor);
  void UpdateActivityIncrement();

  // Only used for testing.
  void DeleteConstraint(int index) {
    constraints_[index]->MarkForDeletion();
    DeleteConstraintMarkedForDeletion();
  }

  // Some statistics.
  int64 num_constraint_lookups() const { return num_constraint_lookups_; }
  int64 num_inspected_constraint_literals() const {
    return num_inspected_constraint_literals_;
  }
  int64 num_threshold_updates() const { return num_threshold_updates_; }

 private:
  bool PropagateNext(Trail* trail);

  // Same function as the clause related one is SatSolver().
  // TODO(user): Remove duplication.
  void ComputeNewLearnedConstraintLimit();
  void DeleteSomeLearnedConstraintIfNeeded();

  // Deletes all the UpperBoundedLinearConstraint for which
  // is_marked_for_deletion() is true. This is relatively slow in O(number of
  // terms in all constraints).
  void DeleteConstraintMarkedForDeletion();

  // Each constraint managed by this class is associated with an index.
  // The set of indices is always [0, num_constraints_).
  //
  // Note(user): this complicate things during deletion, but the propagation is
  // about two times faster with this implementation than one with direct
  // pointer to an UpperBoundedLinearConstraint. The main reason for this is
  // probably that the thresholds_ vector is a lot more efficient cache-wise.
  DEFINE_INT_TYPE(ConstraintIndex, int32);
  struct ConstraintIndexWithCoeff {
    ConstraintIndexWithCoeff() {}  // Needed for vector.resize()
    ConstraintIndexWithCoeff(bool n, ConstraintIndex i, Coefficient c)
        : need_untrail_inspection(n), index(i), coefficient(c) {}
    bool need_untrail_inspection;
    ConstraintIndex index;
    Coefficient coefficient;
  };

  // The set of all pseudo-boolean constraint managed by this class.
  std::vector<std::unique_ptr<UpperBoundedLinearConstraint>> constraints_;

  // The current value of the threshold for each constraints.
  gtl::ITIVector<ConstraintIndex, Coefficient> thresholds_;

  // For each literal, the list of all the constraints that contains it together
  // with the literal coefficient in these constraints.
  gtl::ITIVector<LiteralIndex, std::vector<ConstraintIndexWithCoeff>>
      to_update_;

  // Bitset used to optimize the Untrail() function.
  SparseBitset<ConstraintIndex> to_untrail_;

  // Pointers to the constraints grouped by their hash.
  // This is used to find duplicate constraints by AddConstraint().
  absl::flat_hash_map<int64, std::vector<UpperBoundedLinearConstraint*>>
      possible_duplicates_;

  // Helper to enqueue propagated literals on the trail and store their reasons.
  PbConstraintsEnqueueHelper enqueue_helper_;

  // Last conflicting PB constraint index. This is reset to -1 when
  // ClearConflictingConstraint() is called.
  ConstraintIndex conflicting_constraint_index_;

  // Used for the constraint cleaning policy.
  int target_number_of_learned_constraint_;
  int num_learned_constraint_before_cleanup_;
  double constraint_activity_increment_;

  // Algorithm parameters.
  SatParameters* parameters_;

  // Some statistics.
  mutable StatsGroup stats_;
  int64 num_constraint_lookups_;
  int64 num_inspected_constraint_literals_;
  int64 num_threshold_updates_;
  DISALLOW_COPY_AND_ASSIGN(PbConstraints);
};

// Boolean linear constraints can propagate a lot of literals at the same time.
// As a result, all these literals will have exactly the same reason. It is
// important to take advantage of that during the conflict
// computation/minimization. On some problem, this can have a huge impact.
//
// TODO(user): With the new SAME_REASON_AS mechanism, this is more general so
// move out of pb_constraint.
class VariableWithSameReasonIdentifier {
 public:
  explicit VariableWithSameReasonIdentifier(const Trail& trail)
      : trail_(trail) {}

  void Resize(int num_variables) {
    first_variable_.resize(num_variables);
    seen_.ClearAndResize(BooleanVariable(num_variables));
  }

  // Clears the cache. Call this before each conflict analysis.
  void Clear() { seen_.ClearAll(); }

  // Returns the first variable with exactly the same reason as 'var' on which
  // this function was called since the last Clear(). Note that if no variable
  // had the same reason, then var is returned.
  BooleanVariable FirstVariableWithSameReason(BooleanVariable var) {
    if (seen_[var]) return first_variable_[var];
    const BooleanVariable reference_var =
        trail_.ReferenceVarWithSameReason(var);
    if (reference_var == var) return var;
    if (seen_[reference_var]) return first_variable_[reference_var];
    seen_.Set(reference_var);
    first_variable_[reference_var] = var;
    return var;
  }

 private:
  const Trail& trail_;
  gtl::ITIVector<BooleanVariable, BooleanVariable> first_variable_;
  SparseBitset<BooleanVariable> seen_;

  DISALLOW_COPY_AND_ASSIGN(VariableWithSameReasonIdentifier);
};

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_PB_CONSTRAINT_H_