magic_square.cs 3.15 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using Google.OrTools.ConstraintSolver;

public class MagicSquare
{

  /**
   *
   * Solves the Magic Square problem.
   * See http://www.hakank.org/or-tools/magic_square.py
   *
   */
  private static void Solve(int n = 4, int num = 0, int print = 1)
  {
    Solver solver = new Solver("MagicSquare");

    Console.WriteLine("n: {0}", n);

    //
    // Decision variables
    //
    IntVar[,] x = solver.MakeIntVarMatrix(n, n, 1, n*n, "x");
    // for the branching
    IntVar[] x_flat = x.Flatten();

    
    //
    // Constraints
    //
    long s = (n * (n * n + 1)) / 2;
    Console.WriteLine("s: " + s);

    IntVar[] diag1 = new IntVar[n];
    IntVar[] diag2 = new IntVar[n];
    for(int i = 0; i < n; i++) {
      IntVar[] row = new IntVar[n];
      for(int j = 0; j < n; j++) {
        row[j] = x[i,j];
      }
      // sum row to s
      solver.Add(row.Sum() == s);

      diag1[i] = x[i,i];
      diag2[i] = x[i,n - i - 1];
    }

    // sum diagonals to s
    solver.Add(diag1.Sum() == s);
    solver.Add(diag2.Sum() == s);

    // sum columns to s
    for(int j = 0; j < n; j++) {
      IntVar[] col = new IntVar[n];
      for(int i = 0; i < n; i++) {
        col[i] = x[i,j];
      }
      solver.Add(col.Sum() == s);
    }

    // all are different
    solver.Add(x_flat.AllDifferent());

    // symmetry breaking: upper left is 1
    // solver.Add(x[0,0] == 1);


    //
    // Search
    //

    DecisionBuilder db = solver.MakePhase(x_flat,
                                          Solver.CHOOSE_FIRST_UNBOUND,
                                          Solver.ASSIGN_CENTER_VALUE);


    solver.NewSearch(db);

    int c = 0;
    while (solver.NextSolution()) {
      if (print != 0) {
        for(int i = 0; i < n; i++) {
          for(int j = 0; j < n; j++) {
            Console.Write(x[i,j].Value() + " ");
          }
          Console.WriteLine();
        }
        Console.WriteLine();
      }

      c++;
      if (num > 0 && c >= num) {
        break;
      }
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    int n = 4;
    int num = 0;
    int print = 1;

    if (args.Length > 0) {
      n = Convert.ToInt32(args[0]);
    }

    if (args.Length > 1) {
      num = Convert.ToInt32(args[1]);
    }

    if (args.Length > 2) {
      print = Convert.ToInt32(args[2]);
    }

    Solve(n, num, print);
  }
}