debruijn.cs 4.93 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using Google.OrTools.ConstraintSolver;

public class DeBruijn
{


  /**
   *
   *  ToNum(solver, a, num, base)
   *
   *  channelling between the array a and the number num.
   *
   */
  private static Constraint ToNum(IntVar[] a, IntVar num, int bbase) {
    int len = a.Length;

    IntVar[] tmp = new IntVar[len];
    for(int i = 0; i < len; i++) {
      tmp[i] = (a[i]*(int)Math.Pow(bbase,(len-i-1))).Var();
    }
     return tmp.Sum() == num;
  }



  /**
   *
   * Implements "arbitrary" de Bruijn sequences.
   * See http://www.hakank.org/or-tools/debruijn_binary.py
   *
   */
  private static void Solve(int bbase, int n, int m)
  {
    Solver solver = new Solver("DeBruijn");


    // Ensure that the number of each digit in bin_code is
    // the same. Nice feature, but it can slow things down...
    bool check_same_gcc = false; // true;

    //
    // Decision variables
    //
    IntVar[] x = solver.MakeIntVarArray(m, 0, (int)Math.Pow(bbase, n) - 1, "x");
    IntVar[,] binary = solver.MakeIntVarMatrix(m, n, 0, bbase - 1, "binary");

    // this is the de Bruijn sequence
    IntVar[] bin_code =
      solver.MakeIntVarArray(m, 0, bbase - 1, "bin_code");

    // occurences of each number in bin_code
    IntVar[] gcc = solver.MakeIntVarArray(bbase, 0, m, "gcc");

    // for the branching
    IntVar[] all = new IntVar[2 * m + bbase];
    for(int i = 0; i < m; i++) {
      all[i] = x[i];
      all[m + i] = bin_code[i];
    }
    for(int i = 0; i < bbase; i++) {
      all[2 * m + i] = gcc[i];
    }


    //
    // Constraints
    //

    solver.Add(x.AllDifferent());

    // converts x <-> binary
    for(int i = 0; i < m; i++) {
      IntVar[] t = new IntVar[n];
      for(int j = 0; j < n; j++) {
        t[j] = binary[i,j];
      }
      solver.Add(ToNum(t, x[i], bbase));
    }

    // the de Bruijn condition:
    // the first elements in binary[i] is the same as the last
    // elements in binary[i-1]
    for(int i = 1; i < m; i++) {
      for(int j = 1; j < n; j++) {
        solver.Add(binary[i - 1,j] == binary[i,j - 1]);
      }
    }

    // ... and around the corner
    for(int j = 1; j < n; j++) {
      solver.Add(binary[m - 1,j] == binary[0,j - 1]);
    }

    // converts binary -> bin_code (de Bruijn sequence)
    for(int i = 0; i < m; i++) {
      solver.Add(bin_code[i] == binary[i,0]);

    }


    // extra: ensure that all the numbers in the de Bruijn sequence
    // (bin_code) has the same occurrences (if check_same_gcc is True
    // and mathematically possible)
    solver.Add(bin_code.Distribute(gcc));
    if (check_same_gcc && m % bbase == 0) {
      for(int i = 1; i < bbase; i++) {
        solver.Add(gcc[i] == gcc[i - 1]);
      }
    }

    // symmetry breaking:
    // the minimum value of x should be first
    // solver.Add(x[0] == x.Min());


    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(all,
                                          Solver.CHOOSE_MIN_SIZE_LOWEST_MAX,
                                          Solver.ASSIGN_MIN_VALUE);

    solver.NewSearch(db);

    while (solver.NextSolution()) {
      Console.Write("x: ");
      for(int i = 0; i < m; i++) {
        Console.Write(x[i].Value() + " ");
      }

      Console.Write("\nde Bruijn sequence:");
      for(int i = 0; i < m; i++) {
        Console.Write(bin_code[i].Value() + " ");
      }

      Console.Write("\ngcc: ");
      for(int i = 0; i < bbase; i++) {
        Console.Write(gcc[i].Value() + " ");
      }
      Console.WriteLine("\n");


      // for debugging etc: show the full binary table
      /*
      Console.Write("binary:");
      for(int i = 0; i < m; i++) {
        for(int j = 0; j < n; j++) {
          Console.Write(binary[i][j].Value() + " ");
        }
        Console.WriteLine();
      }
      Console.WriteLine();
      */

    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }

  public static void Main(String[] args)
  {
    int bbase = 2;
    int n    = 3;
    int m    = 8;

    if (args.Length > 0) {
      bbase = Convert.ToInt32(args[0]);
    }

    if (args.Length > 1) {
      n = Convert.ToInt32(args[1]);
    }

    if (args.Length > 2) {
      m = Convert.ToInt32(args[2]);
    }

    Solve(bbase, n, m);
  }
}