Newer
Older
/*===================================================================
======================================================================*/
/**
* @file
* @brief Represents one unmanned aerial vehicle
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#include <QList>
#include <QTimer>
#include <QSettings>
#include <iostream>
#include <QDebug>
#include <cmath>
#include <qmath.h>
#include <limits>
#include <cstdlib>
#include "UAS.h"
#include "LinkInterface.h"
#include "UASManager.h"
#include "QGC.h"
#include "GAudioOutput.h"
#include "MAVLinkProtocol.h"
#include "QGCMAVLink.h"
#include "LinkManager.h"
#include "SerialLink.h"
#include "QGCLoggingCategory.h"
QGC_LOGGING_CATEGORY(UASLog, "UASLog")
#define UAS_DEFAULT_BATTERY_WARNLEVEL 20
/**
* Gets the settings from the previous UAS (name, airframe, autopilot, battery specs)
* by calling readSettings. This means the new UAS will have the same settings
* as the previous one created unless one calls deleteSettings in the code after
* creating the UAS.
UAS::UAS(MAVLinkProtocol* protocol, int id) : UASInterface(),
lipoFull(4.2f),
lipoEmpty(3.5f),
uasId(id),
unknownPackets(),
mavlink(protocol),
receiveDropRate(0),
sendDropRate(0),
name(""),
type(MAV_TYPE_GENERIC),
airframe(QGC_AIRFRAME_GENERIC),
autopilot(-1),
systemIsArmed(false),
// custom_mode not initialized
status(-1),
// shortModeText not initialized
// shortStateText not initialized
// actuatorValues not initialized
// actuatorNames not initialized
// motorValues not initialized
// motorNames mnot initialized
thrustSum(0),
thrustMax(10),
startVoltage(-1.0f),
tickVoltage(10.5f),
lastTickVoltageValue(13.0f),
tickLowpassVoltage(12.0f),
warnLevelPercent(UAS_DEFAULT_BATTERY_WARNLEVEL),
currentVoltage(12.6f),
lpVoltage(12.0f),
chargeLevel(-1),
timeRemaining(0),
lowBattAlarm(false),
startTime(QGC::groundTimeMilliseconds()),
onboardTimeOffset(0),
controlRollManual(true),
controlPitchManual(true),
controlYawManual(true),
controlThrustManual(true),
manualRollAngle(0),
manualPitchAngle(0),
manualYawAngle(0),
manualThrust(0),
positionLock(false),
isLocalPositionKnown(false),
isGlobalPositionKnown(false),
localX(0.0),
localY(0.0),
localZ(0.0),
Anton Babushkin
committed
latitude(0.0),
longitude(0.0),
altitudeAMSL(0.0),
altitudeAMSLFT(0.0),
altitudeWGS84(0.0),
Anton Babushkin
committed
altitudeRelative(0.0),
globalEstimatorActive(false),
latitude_gps(0.0),
longitude_gps(0.0),
altitude_gps(0.0),
Anton Babushkin
committed
speedX(0.0),
speedY(0.0),
speedZ(0.0),
nedPosGlobalOffset(0,0,0),
nedAttGlobalOffset(0,0,0),
airSpeed(std::numeric_limits<double>::quiet_NaN()),
groundSpeed(std::numeric_limits<double>::quiet_NaN()),
fileManager(this, this),
attitudeKnown(false),
attitudeStamped(false),
lastAttitude(0),
roll(0.0),
pitch(0.0),
yaw(0.0),
imagePackets(0), // We must initialize to 0, otherwise extended data packets maybe incorrectly thought to be images
blockHomePositionChanges(false),
receivedMode(false),
// Initialize HIL sensor noise variances to 0. If user wants corrupted sensor values they will need to set them
// Note variances calculated from flight case from this log: http://dash.oznet.ch/view/MRjW8NUNYQSuSZkbn8dEjY
// TODO: calibrate stand-still pixhawk variances
xacc_var(1.2914f),
yacc_var(0.7048f),
zacc_var(1.9577f),
rollspeed_var(0.8126f),
pitchspeed_var(0.6145f),
yawspeed_var(0.5852f),
xmag_var(0.4786f),
ymag_var(0.4566f),
zmag_var(0.3333f),
abs_pressure_var(1.1604f),
diff_pressure_var(1.1604f),
pressure_alt_var(1.1604f),
temperature_var(1.4290f),
// The protected members.
connectionLost(false),
lastVoltageWarning(0),
lastNonNullTime(0),
onboardTimeOffsetInvalidCount(0),
hilEnabled(false),
sensorHil(false),
lastSendTimeGPS(0),
lastSendTimeSensors(0),
lastSendTimeOpticalFlow(0)
for (unsigned int i = 0; i<255;++i)
{
componentID[i] = -1;
componentMulti[i] = false;
}
connect(this, &UAS::_sendMessageOnThread, this, &UAS::_sendMessage, Qt::QueuedConnection);
connect(this, &UAS::_sendMessageOnThreadLink, this, &UAS::_sendMessageLink, Qt::QueuedConnection);
connect(mavlink, SIGNAL(messageReceived(LinkInterface*,mavlink_message_t)), &fileManager, SLOT(receiveMessage(LinkInterface*,mavlink_message_t)));
// Store a list of available actions for this UAS.
// Basically everything exposed as a SLOT with no return value or arguments.
QAction* newAction = new QAction(tr("Arm"), this);
newAction->setToolTip(tr("Enable the UAS so that all actuators are online"));
connect(newAction, SIGNAL(triggered()), this, SLOT(armSystem()));
actions.append(newAction);
newAction = new QAction(tr("Disarm"), this);
newAction->setToolTip(tr("Disable the UAS so that all actuators are offline"));
connect(newAction, SIGNAL(triggered()), this, SLOT(disarmSystem()));
actions.append(newAction);
newAction = new QAction(tr("Toggle armed"), this);
newAction->setToolTip(tr("Toggle between armed and disarmed"));
connect(newAction, SIGNAL(triggered()), this, SLOT(toggleAutonomy()));
actions.append(newAction);
newAction = new QAction(tr("Go home"), this);
newAction->setToolTip(tr("Command the UAS to return to its home position"));
connect(newAction, SIGNAL(triggered()), this, SLOT(home()));
actions.append(newAction);
newAction = new QAction(tr("Land"), this);
newAction->setToolTip(tr("Command the UAS to land"));
connect(newAction, SIGNAL(triggered()), this, SLOT(land()));
actions.append(newAction);
newAction = new QAction(tr("Launch"), this);
newAction->setToolTip(tr("Command the UAS to launch itself and begin its mission"));
connect(newAction, SIGNAL(triggered()), this, SLOT(launch()));
actions.append(newAction);
newAction = new QAction(tr("Resume"), this);
newAction->setToolTip(tr("Command the UAS to continue its mission"));
connect(newAction, SIGNAL(triggered()), this, SLOT(go()));
actions.append(newAction);
newAction = new QAction(tr("Stop"), this);
newAction->setToolTip(tr("Command the UAS to halt and hold position"));
connect(newAction, SIGNAL(triggered()), this, SLOT(halt()));
actions.append(newAction);
newAction = new QAction(tr("Go autonomous"), this);
newAction->setToolTip(tr("Set the UAS into an autonomous control mode"));
connect(newAction, SIGNAL(triggered()), this, SLOT(goAutonomous()));
actions.append(newAction);
newAction = new QAction(tr("Go manual"), this);
newAction->setToolTip(tr("Set the UAS into a manual control mode"));
connect(newAction, SIGNAL(triggered()), this, SLOT(goManual()));
actions.append(newAction);
newAction = new QAction(tr("Toggle autonomy"), this);
newAction->setToolTip(tr("Toggle between manual and full-autonomy"));
connect(newAction, SIGNAL(triggered()), this, SLOT(toggleAutonomy()));
actions.append(newAction);
color = UASInterface::getNextColor();
connect(&statusTimeout, SIGNAL(timeout()), this, SLOT(updateState()));
connect(this, SIGNAL(systemSpecsChanged(int)), this, SLOT(writeSettings()));
readSettings();
// Initial signals
emit disarmed();
emit armingChanged(false);
}
/**
* Saves the settings of name, airframe, autopilot type and battery specifications
* by calling writeSettings.
*/
UAS::~UAS()
{
Lorenz Meier
committed
stopHil();
if (simulation) {
// wait for the simulator to exit
simulation->wait();
simulation->deleteLater();
}
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
writeSettings();
}
/**
* Saves the settings of name, airframe, autopilot type and battery specifications
* for the next instantiation of UAS.
*/
void UAS::writeSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
settings.setValue("NAME", this->name);
settings.setValue("AIRFRAME", this->airframe);
settings.setValue("AP_TYPE", this->autopilot);
settings.setValue("BATTERY_SPECS", getBatterySpecs());
settings.endGroup();
}
/**
* Reads in the settings: name, airframe, autopilot type, and battery specifications
* for the new UAS.
*/
void UAS::readSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
this->name = settings.value("NAME", this->name).toString();
this->airframe = settings.value("AIRFRAME", this->airframe).toInt();
this->autopilot = settings.value("AP_TYPE", this->autopilot).toInt();
if (settings.contains("BATTERY_SPECS"))
{
setBatterySpecs(settings.value("BATTERY_SPECS").toString());
}
settings.endGroup();
}
/**
* Deletes the settings origianally read into the UAS by readSettings.
* This is in case one does not want the old values but would rather
* start with the values assigned by the constructor.
*/
void UAS::deleteSettings()
{
this->name = "";
this->airframe = QGC_AIRFRAME_GENERIC;
this->autopilot = -1;
warnLevelPercent = UAS_DEFAULT_BATTERY_WARNLEVEL;
}
/**
* @ return the id of the uas
*/
int UAS::getUASID() const
{
return uasId;
}
void UAS::triggerAction(int action)
{
if (action >= 0 && action < actions.size())
{
qDebug() << "Triggering action: '" << actions[action]->text() << "'";
actions[action]->trigger();
}
}
/**
* Update the heartbeat.
*/
void UAS::updateState()
{
// Check if heartbeat timed out
quint64 heartbeatInterval = QGC::groundTimeUsecs() - lastHeartbeat;
if (!connectionLost && (heartbeatInterval > timeoutIntervalHeartbeat))
{
connectionLost = true;
Thomas Gubler
committed
receivedMode = false;
QString audiostring = QString("Link lost to system %1").arg(this->getUASID());
GAudioOutput::instance()->say(audiostring.toLower(), GAudioOutput::AUDIO_SEVERITY_ALERT);
}
// Update connection loss time on each iteration
if (connectionLost && (heartbeatInterval > timeoutIntervalHeartbeat))
{
connectionLossTime = heartbeatInterval;
emit heartbeatTimeout(true, heartbeatInterval/1000);
}
// Connection gained
if (connectionLost && (heartbeatInterval < timeoutIntervalHeartbeat))
{
QString audiostring = QString("Link regained to system %1").arg(this->getUASID());
GAudioOutput::instance()->say(audiostring.toLower(), GAudioOutput::AUDIO_SEVERITY_NOTICE);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
connectionLost = false;
connectionLossTime = 0;
emit heartbeatTimeout(false, 0);
}
// Position lock is set by the MAVLink message handler
// if no position lock is available, indicate an error
if (positionLock)
{
positionLock = false;
}
}
/**
* If the acitve UAS (the UAS that was selected) is not the one that is currently
* active, then change the active UAS to the one that was selected.
*/
void UAS::setSelected()
{
if (UASManager::instance()->getActiveUAS() != this)
{
UASManager::instance()->setActiveUAS(this);
emit systemSelected(true);
}
}
/**
* @return if the active UAS is the current UAS
**/
bool UAS::getSelected() const
{
return (UASManager::instance()->getActiveUAS() == this);
}
void UAS::receiveMessage(LinkInterface* link, mavlink_message_t message)
{
if (!_containsLink(link)) {
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
addLink(link);
// qDebug() << __FILE__ << __LINE__ << "ADDED LINK!" << link->getName();
}
if (!components.contains(message.compid))
{
QString componentName;
switch (message.compid)
{
case MAV_COMP_ID_ALL:
{
componentName = "ANONYMOUS";
break;
}
case MAV_COMP_ID_IMU:
{
componentName = "IMU #1";
break;
}
case MAV_COMP_ID_CAMERA:
{
componentName = "CAMERA";
break;
}
case MAV_COMP_ID_MISSIONPLANNER:
{
componentName = "MISSIONPLANNER";
break;
}
}
components.insert(message.compid, componentName);
emit componentCreated(uasId, message.compid, componentName);
}
// qDebug() << "UAS RECEIVED from" << message.sysid << "component" << message.compid << "msg id" << message.msgid << "seq no" << message.seq;
// Only accept messages from this system (condition 1)
// and only then if a) attitudeStamped is disabled OR b) attitudeStamped is enabled
// and we already got one attitude packet
if (message.sysid == uasId && (!attitudeStamped || (attitudeStamped && (lastAttitude != 0)) || message.msgid == MAVLINK_MSG_ID_ATTITUDE))
{
QString uasState;
QString stateDescription;
bool multiComponentSourceDetected = false;
bool wrongComponent = false;
switch (message.compid)
{
case MAV_COMP_ID_IMU_2:
// Prefer IMU 2 over IMU 1 (FIXME)
componentID[message.msgid] = MAV_COMP_ID_IMU_2;
break;
default:
// Do nothing
break;
}
// Store component ID
if (componentID[message.msgid] == -1)
{
// Prefer the first component
componentID[message.msgid] = message.compid;
}
else
{
// Got this message already
if (componentID[message.msgid] != message.compid)
{
componentMulti[message.msgid] = true;
wrongComponent = true;
}
}
if (componentMulti[message.msgid] == true) multiComponentSourceDetected = true;
switch (message.msgid)
{
case MAVLINK_MSG_ID_HEARTBEAT:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
lastHeartbeat = QGC::groundTimeUsecs();
emit heartbeat(this);
mavlink_heartbeat_t state;
mavlink_msg_heartbeat_decode(&message, &state);
// Send the base_mode and system_status values to the plotter. This uses the ground time
// so the Ground Time checkbox must be ticked for these values to display
quint64 time = getUnixTime();
QString name = QString("M%1:HEARTBEAT.%2").arg(message.sysid);
emit valueChanged(uasId, name.arg("base_mode"), "bits", state.base_mode, time);
emit valueChanged(uasId, name.arg("custom_mode"), "bits", state.custom_mode, time);
emit valueChanged(uasId, name.arg("system_status"), "-", state.system_status, time);
// Set new type if it has changed
if (this->type != state.type)
{
this->autopilot = state.autopilot;
setSystemType(state.type);
}
bool currentlyArmed = state.base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY;
if (systemIsArmed != currentlyArmed)
{
systemIsArmed = currentlyArmed;
emit armingChanged(systemIsArmed);
if (systemIsArmed)
{
emit armed();
}
else
{
emit disarmed();
}
}
QString audiostring = QString("System %1").arg(uasId);
QString stateAudio = "";
QString modeAudio = "";
QString navModeAudio = "";
bool statechanged = false;
bool modechanged = false;
QString audiomodeText = getAudioModeTextFor(state.base_mode, state.custom_mode);
if ((state.system_status != this->status) && state.system_status != MAV_STATE_UNINIT)
{
statechanged = true;
this->status = state.system_status;
getStatusForCode((int)state.system_status, uasState, stateDescription);
emit statusChanged(this, uasState, stateDescription);
emit statusChanged(this->status);
shortStateText = uasState;
// Adjust for better audio
if (uasState == QString("STANDBY")) uasState = QString("standing by");
if (uasState == QString("EMERGENCY")) uasState = QString("emergency condition");
if (uasState == QString("CRITICAL")) uasState = QString("critical condition");
if (uasState == QString("SHUTDOWN")) uasState = QString("shutting down");
stateAudio = uasState;
}
if (this->base_mode != state.base_mode || this->custom_mode != state.custom_mode)
{
modechanged = true;
this->base_mode = state.base_mode;
this->custom_mode = state.custom_mode;
shortModeText = getShortModeTextFor(this->base_mode, this->custom_mode);
emit modeChanged(this->getUASID(), shortModeText, "");
modeAudio = " is now in " + audiomodeText;
}
// We got the mode
receivedMode = true;
// AUDIO
if (modechanged && statechanged)
{
// Output both messages
audiostring += modeAudio + " and " + stateAudio;
}
else if (modechanged || statechanged)
{
// Output the one message
}
if (statechanged && ((int)state.system_status == (int)MAV_STATE_CRITICAL || state.system_status == (int)MAV_STATE_EMERGENCY))
{
GAudioOutput::instance()->say(QString("Emergency for system %1").arg(this->getUASID()), GAudioOutput::AUDIO_SEVERITY_EMERGENCY);
QTimer::singleShot(3000, GAudioOutput::instance(), SLOT(startEmergency()));
}
else if (modechanged || statechanged)
{
GAudioOutput::instance()->say(audiostring.toLower());
}
}
break;
case MAVLINK_MSG_ID_BATTERY_STATUS:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
mavlink_battery_status_t bat_status;
mavlink_msg_battery_status_decode(&message, &bat_status);
emit batteryConsumedChanged(this, (double)bat_status.current_consumed);
}
break;
case MAVLINK_MSG_ID_SYS_STATUS:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
mavlink_sys_status_t state;
mavlink_msg_sys_status_decode(&message, &state);
// Prepare for sending data to the realtime plotter, which is every field excluding onboard_control_sensors_present.
quint64 time = getUnixTime();
QString name = QString("M%1:SYS_STATUS.%2").arg(message.sysid);
emit valueChanged(uasId, name.arg("sensors_enabled"), "bits", state.onboard_control_sensors_enabled, time);
emit valueChanged(uasId, name.arg("sensors_health"), "bits", state.onboard_control_sensors_health, time);
emit valueChanged(uasId, name.arg("errors_comm"), "-", state.errors_comm, time);
emit valueChanged(uasId, name.arg("errors_count1"), "-", state.errors_count1, time);
emit valueChanged(uasId, name.arg("errors_count2"), "-", state.errors_count2, time);
emit valueChanged(uasId, name.arg("errors_count3"), "-", state.errors_count3, time);
emit valueChanged(uasId, name.arg("errors_count4"), "-", state.errors_count4, time);
// Process CPU load.
emit loadChanged(this,state.load/10.0f);
emit valueChanged(uasId, name.arg("load"), "%", state.load/10.0f, time);
// Battery charge/time remaining/voltage calculations
currentVoltage = state.voltage_battery/1000.0f;
lpVoltage = filterVoltage(currentVoltage);
tickLowpassVoltage = tickLowpassVoltage*0.8f + 0.2f*currentVoltage;
// We don't want to tick above the threshold
if (tickLowpassVoltage > tickVoltage)
{
lastTickVoltageValue = tickLowpassVoltage;
}
if ((startVoltage > 0.0f) && (tickLowpassVoltage < tickVoltage) && (fabs(lastTickVoltageValue - tickLowpassVoltage) > 0.1f)
/* warn if lower than treshold */
&& (lpVoltage < tickVoltage)
/* warn only if we have at least the voltage of an empty LiPo cell, else we're sampling something wrong */
&& (currentVoltage > 3.3f)
/* warn only if current voltage is really still lower by a reasonable amount */
&& ((currentVoltage - 0.2f) < tickVoltage)
/* warn only every 12 seconds */
&& (QGC::groundTimeUsecs() - lastVoltageWarning) > 12000000)
{
GAudioOutput::instance()->say(QString("Voltage warning for system %1: %2 volts").arg(getUASID()).arg(lpVoltage, 0, 'f', 1, QChar(' ')));
lastVoltageWarning = QGC::groundTimeUsecs();
lastTickVoltageValue = tickLowpassVoltage;
}
if (startVoltage == -1.0f && currentVoltage > 0.1f) startVoltage = currentVoltage;
timeRemaining = calculateTimeRemaining();
chargeLevel = state.battery_remaining;
emit batteryChanged(this, lpVoltage, currentCurrent, getChargeLevel(), timeRemaining);
emit valueChanged(uasId, name.arg("battery_remaining"), "%", getChargeLevel(), time);
emit valueChanged(uasId, name.arg("battery_voltage"), "V", currentVoltage, time);
// And if the battery current draw is measured, log that also.
if (state.current_battery != -1)
{
currentCurrent = ((double)state.current_battery)/100.0f;
emit valueChanged(uasId, name.arg("battery_current"), "A", currentCurrent, time);
}
// LOW BATTERY ALARM
if (chargeLevel >= 0 && (getChargeLevel() < warnLevelPercent))
startLowBattAlarm();
}
else
{
stopLowBattAlarm();
}
// control_sensors_enabled:
// relevant bits: 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control
emit attitudeControlEnabled(state.onboard_control_sensors_enabled & (1 << 11));
emit positionYawControlEnabled(state.onboard_control_sensors_enabled & (1 << 12));
emit positionZControlEnabled(state.onboard_control_sensors_enabled & (1 << 13));
emit positionXYControlEnabled(state.onboard_control_sensors_enabled & (1 << 14));
// Trigger drop rate updates as needed. Here we convert the incoming
// drop_rate_comm value from 1/100 of a percent in a uint16 to a true
// percentage as a float. We also cap the incoming value at 100% as defined
// by the MAVLink specifications.
if (state.drop_rate_comm > 10000)
{
state.drop_rate_comm = 10000;
}
emit dropRateChanged(this->getUASID(), state.drop_rate_comm/100.0f);
emit valueChanged(uasId, name.arg("drop_rate_comm"), "%", state.drop_rate_comm/100.0f, time);
}
break;
case MAVLINK_MSG_ID_ATTITUDE:
{
mavlink_attitude_t attitude;
mavlink_msg_attitude_decode(&message, &attitude);
quint64 time = getUnixReferenceTime(attitude.time_boot_ms);
emit attitudeChanged(this, message.compid, QGC::limitAngleToPMPIf(attitude.roll), QGC::limitAngleToPMPIf(attitude.pitch), QGC::limitAngleToPMPIf(attitude.yaw), time);
if (!wrongComponent)
{
lastAttitude = time;
Michael Carpenter
committed
setRoll(QGC::limitAngleToPMPIf(attitude.roll));
setPitch(QGC::limitAngleToPMPIf(attitude.pitch));
setYaw(QGC::limitAngleToPMPIf(attitude.yaw));
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
attitudeKnown = true;
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
emit attitudeRotationRatesChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time);
}
}
break;
case MAVLINK_MSG_ID_ATTITUDE_QUATERNION:
{
mavlink_attitude_quaternion_t attitude;
mavlink_msg_attitude_quaternion_decode(&message, &attitude);
quint64 time = getUnixReferenceTime(attitude.time_boot_ms);
double a = attitude.q1;
double b = attitude.q2;
double c = attitude.q3;
double d = attitude.q4;
double aSq = a * a;
double bSq = b * b;
double cSq = c * c;
double dSq = d * d;
float dcm[3][3];
dcm[0][0] = aSq + bSq - cSq - dSq;
dcm[0][1] = 2.0 * (b * c - a * d);
dcm[0][2] = 2.0 * (a * c + b * d);
dcm[1][0] = 2.0 * (b * c + a * d);
dcm[1][1] = aSq - bSq + cSq - dSq;
dcm[1][2] = 2.0 * (c * d - a * b);
dcm[2][0] = 2.0 * (b * d - a * c);
dcm[2][1] = 2.0 * (a * b + c * d);
dcm[2][2] = aSq - bSq - cSq + dSq;
float phi, theta, psi;
theta = asin(-dcm[2][0]);
if (fabs(theta - M_PI_2) < 1.0e-3f) {
phi = 0.0f;
psi = (atan2(dcm[1][2] - dcm[0][1],
dcm[0][2] + dcm[1][1]) + phi);
} else if (fabs(theta + M_PI_2) < 1.0e-3f) {
phi = 0.0f;
psi = atan2f(dcm[1][2] - dcm[0][1],
dcm[0][2] + dcm[1][1] - phi);
} else {
phi = atan2f(dcm[2][1], dcm[2][2]);
psi = atan2f(dcm[1][0], dcm[0][0]);
}
emit attitudeChanged(this, message.compid, QGC::limitAngleToPMPIf(phi),
QGC::limitAngleToPMPIf(theta),
QGC::limitAngleToPMPIf(psi), time);
if (!wrongComponent)
{
lastAttitude = time;
setRoll(QGC::limitAngleToPMPIf(phi));
setPitch(QGC::limitAngleToPMPIf(theta));
setYaw(QGC::limitAngleToPMPIf(psi));
attitudeKnown = true;
Michael Carpenter
committed
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
emit attitudeRotationRatesChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time);
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
}
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET:
{
mavlink_local_position_ned_system_global_offset_t offset;
mavlink_msg_local_position_ned_system_global_offset_decode(&message, &offset);
nedPosGlobalOffset.setX(offset.x);
nedPosGlobalOffset.setY(offset.y);
nedPosGlobalOffset.setZ(offset.z);
nedAttGlobalOffset.setX(offset.roll);
nedAttGlobalOffset.setY(offset.pitch);
nedAttGlobalOffset.setZ(offset.yaw);
}
break;
case MAVLINK_MSG_ID_HIL_CONTROLS:
{
mavlink_hil_controls_t hil;
mavlink_msg_hil_controls_decode(&message, &hil);
emit hilControlsChanged(hil.time_usec, hil.roll_ailerons, hil.pitch_elevator, hil.yaw_rudder, hil.throttle, hil.mode, hil.nav_mode);
}
break;
case MAVLINK_MSG_ID_VFR_HUD:
{
mavlink_vfr_hud_t hud;
mavlink_msg_vfr_hud_decode(&message, &hud);
quint64 time = getUnixTime();
// Display updated values
emit thrustChanged(this, hud.throttle/100.0);
if (!attitudeKnown)
{
Anton Babushkin
committed
setYaw(QGC::limitAngleToPMPId((((double)hud.heading)/180.0)*M_PI));
Michael Carpenter
committed
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
Anton Babushkin
committed
setAltitudeAMSL(hud.alt);
setGroundSpeed(hud.groundspeed);
if (!isnan(hud.airspeed))
setAirSpeed(hud.airspeed);
speedZ = -hud.climb;
emit altitudeChanged(this, altitudeAMSL, altitudeWGS84, altitudeRelative, -speedZ, time);
Anton Babushkin
committed
emit speedChanged(this, groundSpeed, airSpeed, time);
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_NED:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_local_position_ned_t pos;
mavlink_msg_local_position_ned_decode(&message, &pos);
quint64 time = getUnixTime(pos.time_boot_ms);
// Emit position always with component ID
emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time);
if (!wrongComponent)
{
Anton Babushkin
committed
setLocalX(pos.x);
setLocalY(pos.y);
setLocalZ(pos.z);
speedX = pos.vx;
speedY = pos.vy;
speedZ = pos.vz;
Anton Babushkin
committed
emit localPositionChanged(this, localX, localY, localZ, time);
emit velocityChanged_NED(this, speedX, speedY, speedZ, time);
positionLock = true;
isLocalPositionKnown = true;
}
}
break;
case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE:
{
mavlink_global_vision_position_estimate_t pos;
mavlink_msg_global_vision_position_estimate_decode(&message, &pos);
quint64 time = getUnixTime(pos.usec);
emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time);
emit attitudeChanged(this, message.compid, pos.roll, pos.pitch, pos.yaw, time);
}
break;
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_global_position_int_t pos;
mavlink_msg_global_position_int_decode(&message, &pos);
Anton Babushkin
committed
quint64 time = getUnixTime();
Anton Babushkin
committed
Michael Carpenter
committed
setLatitude(pos.lat/(double)1E7);
setLongitude(pos.lon/(double)1E7);
Anton Babushkin
committed
setAltitudeRelative(pos.relative_alt/1000.0);
globalEstimatorActive = true;
speedX = pos.vx/100.0;
speedY = pos.vy/100.0;
speedZ = pos.vz/100.0;
emit globalPositionChanged(this, getLatitude(), getLongitude(), getAltitudeAMSL(), getAltitudeWGS84(), time);
emit altitudeChanged(this, altitudeAMSL, altitudeWGS84, altitudeRelative, -speedZ, time);
// We had some frame mess here, global and local axes were mixed.
emit velocityChanged_NED(this, speedX, speedY, speedZ, time);
Anton Babushkin
committed
setGroundSpeed(qSqrt(speedX*speedX+speedY*speedY));
emit speedChanged(this, groundSpeed, airSpeed, time);
positionLock = true;
isGlobalPositionKnown = true;
}
break;
case MAVLINK_MSG_ID_GPS_RAW_INT:
{
mavlink_gps_raw_int_t pos;
mavlink_msg_gps_raw_int_decode(&message, &pos);
quint64 time = getUnixTime(pos.time_usec);
emit gpsLocalizationChanged(this, pos.fix_type);
// TODO: track localization state not only for gps but also for other loc. sources
int loc_type = pos.fix_type;
if (loc_type == 1)
{
loc_type = 0;
}
emit localizationChanged(this, loc_type);
Michael Carpenter
committed
setSatelliteCount(pos.satellites_visible);
if (pos.fix_type > 2)
{
Anton Babushkin
committed
positionLock = true;
isGlobalPositionKnown = true;
Michael Carpenter
committed
latitude_gps = pos.lat/(double)1E7;
longitude_gps = pos.lon/(double)1E7;
altitude_gps = pos.alt/1000.0;
// If no GLOBAL_POSITION_INT messages ever received, use these raw GPS values instead.
if (!globalEstimatorActive) {
Michael Carpenter
committed
setLatitude(latitude_gps);
setLongitude(longitude_gps);
setAltitudeWGS84(altitude_gps);
emit globalPositionChanged(this, getLatitude(), getLongitude(), getAltitudeAMSL(), getAltitudeWGS84(), time);
emit altitudeChanged(this, altitudeAMSL, altitudeWGS84, altitudeRelative, -speedZ, time);
Anton Babushkin
committed
float vel = pos.vel/100.0f;
// Smaller than threshold and not NaN
if ((vel < 1000000) && !isnan(vel) && !isinf(vel)) {
Anton Babushkin
committed
emit speedChanged(this, groundSpeed, airSpeed, time);
} else {
emit textMessageReceived(uasId, message.compid, MAV_SEVERITY_NOTICE, QString("GCS ERROR: RECEIVED INVALID SPEED OF %1 m/s").arg(vel));
}
}
}
break;
case MAVLINK_MSG_ID_GPS_STATUS:
{
mavlink_gps_status_t pos;
mavlink_msg_gps_status_decode(&message, &pos);
for(int i = 0; i < (int)pos.satellites_visible; i++)
{
emit gpsSatelliteStatusChanged(uasId, (unsigned char)pos.satellite_prn[i], (unsigned char)pos.satellite_elevation[i], (unsigned char)pos.satellite_azimuth[i], (unsigned char)pos.satellite_snr[i], static_cast<bool>(pos.satellite_used[i]));
}
Michael Carpenter
committed
setSatelliteCount(pos.satellites_visible);
}
break;
case MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN:
{
mavlink_gps_global_origin_t pos;
mavlink_msg_gps_global_origin_decode(&message, &pos);
emit homePositionChanged(uasId, pos.latitude / 10000000.0, pos.longitude / 10000000.0, pos.altitude / 1000.0);
}
break;
case MAVLINK_MSG_ID_RC_CHANNELS:
{
mavlink_rc_channels_t channels;
mavlink_msg_rc_channels_decode(&message, &channels);
emit remoteControlRSSIChanged(channels.rssi);
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
if (channels.chan1_raw != UINT16_MAX && channels.chancount > 0)
emit remoteControlChannelRawChanged(0, channels.chan1_raw);
if (channels.chan2_raw != UINT16_MAX && channels.chancount > 1)
emit remoteControlChannelRawChanged(1, channels.chan2_raw);
if (channels.chan3_raw != UINT16_MAX && channels.chancount > 2)
emit remoteControlChannelRawChanged(2, channels.chan3_raw);
if (channels.chan4_raw != UINT16_MAX && channels.chancount > 3)
emit remoteControlChannelRawChanged(3, channels.chan4_raw);
if (channels.chan5_raw != UINT16_MAX && channels.chancount > 4)
emit remoteControlChannelRawChanged(4, channels.chan5_raw);
if (channels.chan6_raw != UINT16_MAX && channels.chancount > 5)
emit remoteControlChannelRawChanged(5, channels.chan6_raw);
if (channels.chan7_raw != UINT16_MAX && channels.chancount > 6)
emit remoteControlChannelRawChanged(6, channels.chan7_raw);
if (channels.chan8_raw != UINT16_MAX && channels.chancount > 7)
emit remoteControlChannelRawChanged(7, channels.chan8_raw);
if (channels.chan9_raw != UINT16_MAX && channels.chancount > 8)
emit remoteControlChannelRawChanged(8, channels.chan9_raw);
if (channels.chan10_raw != UINT16_MAX && channels.chancount > 9)
emit remoteControlChannelRawChanged(9, channels.chan10_raw);
if (channels.chan11_raw != UINT16_MAX && channels.chancount > 10)
emit remoteControlChannelRawChanged(10, channels.chan11_raw);
if (channels.chan12_raw != UINT16_MAX && channels.chancount > 11)
emit remoteControlChannelRawChanged(11, channels.chan12_raw);
if (channels.chan13_raw != UINT16_MAX && channels.chancount > 12)
emit remoteControlChannelRawChanged(12, channels.chan13_raw);
if (channels.chan14_raw != UINT16_MAX && channels.chancount > 13)
emit remoteControlChannelRawChanged(13, channels.chan14_raw);
if (channels.chan15_raw != UINT16_MAX && channels.chancount > 14)
emit remoteControlChannelRawChanged(14, channels.chan15_raw);
if (channels.chan16_raw != UINT16_MAX && channels.chancount > 15)