estimators.py 6.08 KB
Newer Older
Lukas Eller's avatar
Lukas Eller committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
import pymc3 as pm
from abc import ABC
from scipy.stats import circmean, circstd
import numpy as np
import matplotlib.pyplot as plt
from helpers.custom_von_mises import CustomVonMises
import os
from system_model import ShadowFading
import theano.tensor as tt

def transform_mean(mean_1):
    mean_1 = tt.switch( tt.gt(mean_1, np.pi), mean_1 - 2 * np.pi, mean_1 )
    mean_1 = tt.switch( tt.lt(mean_1, -np.pi), mean_1 + 2 * np.pi, mean_1 )

    return mean_1

class Estimator(ABC):
    @property
    def name(self):
        return self._name

    @property
    def save_path(self):
        return self._save_path

    @save_path.setter
    def save_path(self, value):
        self._save_path = value

    def mmse_estimate(self, return_std=True):
        results = []

        for sample in self._samples:
            posterior_mean = circmean(sample, low=-np.pi, high=np.pi) * 180 / np.pi
            posterior_variance = circstd(sample, low=-np.pi, high=np.pi) * 180 / np.pi
            if return_std:
                results.append(
                    (posterior_mean, posterior_variance)
                )
            else:
                results.append(posterior_mean)

        return results

    def traceplot(self, sector=None, show=False):
        trarr = pm.traceplot(self._trace)
        fig = plt.gcf()
        if self._save_path is not None:
            if sector is not None:
                fig.savefig(os.path.join(self._save_path, f"traceplot_{self._name}_{sector}.jpeg"), bbox_inches="tight")
            else:
                fig.savefig(os.path.join(self._save_path, f"traceplot_{self._name}.jpeg"), bbox_inches="tight")

        if show:
            plt.show()
        plt.close()

class SingleEstimator(Estimator):

    def __init__(self, name, system_model, tune=2000, samples=2000):
        self._name = name
        self._system_model = system_model
        self._tune = 2000
        self._num_amples = 2000

    def run(self, locations, azimuths, pathloss):
        y = self._system_model.apply_pathloss_model(locations, pathloss)

        with pm.Model() as single_model:
            sector_orienation = CustomVonMises('SectorOrientation', mu=0, kappa=1e-3)

            offset = pm.Uniform("Offset", lower=-5, upper=5)

            cov_matrix = ShadowFading(sigma_f=10, correlation_distance=50).covariance(locations)
            observation = pm.MvNormal(
                "Observation",
                mu=self._system_model.theano_system_model(azimuths, sector_orienation) + offset,
                observed=y,
                cov=cov_matrix
            )

            trace = pm.sample(
                self._num_amples,
                tune=self._tune,
                return_inferencedata=False,
                target_accept=0.95,
                chains=4,
                cores=10
            )

            self._trace = trace
            self._samples = [
                self._trace["SectorOrientation"]
            ]

class JointEstimator(Estimator):
    def __init__(self, name, system_model, tune=2000, samples=2000):
        self._name = name
        self._system_model = system_model
        self._tune = 2000
        self._num_amples = 2000

    def run(self, location_list, azimuth_list, pathloss_list):
        y_list = [
            self._system_model.apply_pathloss_model(location_list[i], pathloss_list[i])
            for i in range(3)
        ]

        with pm.Model() as joint_model:
            sector_confidence = 50
            alpha = 1e-6

            w = pm.Dirichlet("w", a=np.array([alpha, alpha]))

            orientation_0 = CustomVonMises('SectorOrientation_0', mu=0, kappa=1e-3)
            orientation_1 = CustomVonMises('SectorOrientation_1', mu=transform_mean(orientation_0 + 2/3 * np.pi), kappa=sector_confidence)
            orientation_2 = CustomVonMises('SectorOrientation_2', mu=transform_mean(orientation_0 - 2/3 * np.pi), kappa=sector_confidence)


            cov_list = [
                ShadowFading(sigma_f=10, correlation_distance=50).covariance(location_list[i])
                for i in range(3)
            ]

            offset = pm.Uniform("Offset", lower=-5, upper=5)

            obs_0 = pm.MvNormal(
                "Observation_0",
                mu=self._system_model.theano_system_model(azimuth_list[0], orientation_0 ) + offset,
                observed=y_list[0],
                cov=cov_list[0]
            )

            obs_1_1 = pm.MvNormal.dist(
                mu=self._system_model.theano_system_model(azimuth_list[1], orientation_1) + offset,
                cov=cov_list[1]
            )
            obs_1_2 = pm.MvNormal.dist(
                mu=self._system_model.theano_system_model(azimuth_list[1], orientation_2) + offset,
                cov=cov_list[1]
            )

            obs_2_1 = pm.MvNormal.dist(
                mu=self._system_model.theano_system_model(azimuth_list[2], orientation_1) + offset,
                cov=cov_list[2]
            )
            obs_2_2 = pm.MvNormal.dist(
                mu=self._system_model.theano_system_model(azimuth_list[2], orientation_2) + offset,
                cov=cov_list[2]
            )


            obs_1 = pm.Mixture("Observation_1", w=w, comp_dists=[obs_1_1, obs_1_2], observed=y_list[1])
            obs_2 = pm.Mixture("Observation_2", w=w, comp_dists=[obs_2_2, obs_2_1], observed=y_list[2])

            trace = pm.sample(
                self._num_amples,
                tune=self._tune,
                return_inferencedata=False,
                target_accept=0.95,
                chains=4,
                cores=10
            )

            self._trace = trace

            self._samples = [
                self._trace["SectorOrientation_0"]
            ]

            w_0_decision = np.median(trace.get_values('w')[:,0]) > 0.5

            self._w = np.median(trace.get_values('w')[:,0])

            if w_0_decision:
                self._samples.append(trace.get_values('SectorOrientation_1'))
                self._samples.append(trace.get_values('SectorOrientation_2'))
            else:
                self._samples.append(trace.get_values('SectorOrientation_2'))
                self._samples.append(trace.get_values('SectorOrientation_1'))