run_scenario.py 11.3 KB
Newer Older
 Lukas Eller's avatar
Lukas Eller committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
import numpy as np
import matplotlib.pyplot as plt
import json
import os
from tqdm import tqdm
import matplotlib
from abc import ABC, abstractmethod
import pandas as pd
from typing import List

from helpers.data_generator import (
    Sequence,
    MetaGenerator,
    RSRPTargetGenerator,
    EnvironmentGenerator1D,
    EnvironmentGenerator2D,
)
from helpers.models import CompleteModel, VanillaMetNet, VanillaOutput
from helpers.models import (
    NetworkConvNetDP,
    CombinerConvNetDP,
    NetworkConvNetFS,
    CombinerConvNetFS,
    CombinerRefNetMD
)

import rasterio as rio
from helpers.uma_pathloss import AntennaPattern, PathlossModel

class BasePlanner(ABC):
    name: str = NotImplemented
    features: List[str] = NotImplemented

    def __init__(self):
        with open("helpers/reference.json", "r") as f:
            self._reference = json.load(f)

    @abstractmethod
    def _prepare(self, input_df: pd.DataFrame):
        pass

    def predict(self, input_df: pd.DataFrame):
        model, sequence = self._prepare(input_df)

        y_list = [
            model._model.predict(batch[0]) for batch in tqdm(sequence, desc=f"Predicting Batch for {self.name}")
        ]

        prediction_data = input_df
        prediction_data["pred"] = np.concatenate(y_list)

        prediction_data.loc[(prediction_data.d_h <= 10), 'pred'] = np.nan

        return prediction_data

class ConvNetFS(BasePlanner):

    name = "ConvNetFS"
    features = [
        "alignment_offset_h",
        "alignment_offset_v",
        "d_h",
        "d_v",
        "los_pred",
        "nlos_pred",
        "frequency",
    ]

    def _prepare(self, input_df: pd.DataFrame):
        sequence = Sequence(
            input_df,
            64,
            EnvironmentGenerator2D(
                resolution=1, bounding_box=(50, 50, 50, 500), use_coord_conv=True
            ),
            MetaGenerator(*self.features, standardize=True).fit(
                pd.Series(self._reference["mean"])[self.features],
                pd.Series(self._reference["std"])[self.features],
            ),
            RSRPTargetGenerator(),
        )

        model = CompleteModel(
            f"convfs",
            NetworkConvNetFS(sequence.shape["X_img"]),
            VanillaMetNet(sequence.shape["X_met"]),
            CombinerConvNetFS(),
            VanillaOutput(),
            optimizer="adam",
        ).build()

        model.load("trained_models/convnetfs/cp.ckpt")

        return model, sequence

class ConvNetDP(BasePlanner):
    name = "ConvNetDP"
    features = [
        "alignment_offset_h",
        "alignment_offset_v",
        "d_h",
        "d_v",
        "los_pred",
        "nlos_pred",
        "frequency",
    ]

    def _prepare(self, input_df: pd.DataFrame):

        sequence = Sequence(
            input_df,
            64,
            EnvironmentGenerator1D(resolution=1, bounding_box=(50, 50, 50, 500)),
            MetaGenerator(*self.features, standardize=True).fit(
                pd.Series(self._reference["mean"])[self.features],
                pd.Series(self._reference["std"])[self.features],
            ),
            RSRPTargetGenerator(),
        )

        model = CompleteModel(
            f"convdp",
            NetworkConvNetDP(sequence.shape["X_img"]),
            VanillaMetNet(sequence.shape["X_met"]),
            CombinerConvNetDP(),
            VanillaOutput(),
            optimizer="adam",
        ).build()

        model.load("trained_models/convnetdp/cp.ckpt")

        return model, sequence


class RefNetMD(BasePlanner):
    name = "RefNetMD"
    features = [
        "alignment_offset_h",
        "alignment_offset_v",
        "d_h",
        "d_v",
        "los_pred",
        "nlos_pred",
        "frequency",
        "los_indicator_GEOM",
    ]

    def _prepare(self, input_df: pd.DataFrame):

        sequence = Sequence(
            input_df,
            64,
            None,
            MetaGenerator(*self.features, standardize=True).fit(
                pd.Series(self._reference["mean"])[self.features],
                pd.Series(self._reference["std"])[self.features],
            ),
            RSRPTargetGenerator(),
        )

        model = CompleteModel(
            f"refnetmd",
            None,
            VanillaMetNet(sequence.shape["X_met"]),
            CombinerRefNetMD(),
            VanillaOutput(),
            optimizer="adam",
        ).build()

        model.load("trained_models/refnetmd/cp.ckpt")

        return model, sequence

class Scenario:
    def __init__(self, scenario_name):
        self._scenario_name = scenario_name
        self._scenario_path = f"scenarios/{self._scenario_name}"

        with open(f"{self._scenario_path}/config.json", "r") as fp:
            self._config = json.load(fp)

        self._env_name = self._config["environment"]
        self._env_path = f"environments/{self._env_name}"
        self._env_metadata = pd.read_parquet(
            f"environments/{self._env_name}/metadata.parquet"
        )
        self._environment = rio.open(f"{self._env_path}/environment.tif")

    def prepare(self):
        self._prepare_uma(**self._config)
        self._prepare_los_indicator()

        self._scenario_meta_data_df.to_parquet(
            f"{self._scenario_path}/metadata.parquet"
        )

        return self

    def load(self):
        self._scenario_meta_data_df = pd.read_parquet(
            f"{self._scenario_path}/metadata.parquet"
        )

        return self

    def _prepare_uma(self, **params):
        pathloss = PathlossModel()
        antenna_vert = AntennaPattern(30, 65)
        antenna_horz = AntennaPattern(20, 110)

        scenario_meta_data_df = self._env_metadata

        scenario_meta_data_df["bs_height"] = params["h_bs"]
        scenario_meta_data_df["d_v"] = params["h_bs"] - 1.5
        scenario_meta_data_df["d_h"] = np.sqrt(
            scenario_meta_data_df.x ** 2 + scenario_meta_data_df.y ** 2
        )
        scenario_meta_data_df["rspower"] = params["P_tx"]
        scenario_meta_data_df["frequency"] = params["f"]
        scenario_meta_data_df["RSRP"] = 0

        diff_v = (
            np.abs(
                params["phi_sec_v"]
                - np.arctan2(scenario_meta_data_df.d_v, scenario_meta_data_df.d_h)
                * 180
                / np.pi
            )
            % 360
        )
        diff_v[diff_v >= 180] = 360 - diff_v
        scenario_meta_data_df["alignment_offset_v"] = diff_v

        scenario_meta_data_df["alignment_offset_h"] = 0  # Uniform Case
        if params["phi_sec_h"]:
            diff_h = (
                np.abs(
                    params["phi_sec_h"]
                    - np.arctan2(scenario_meta_data_df.y, scenario_meta_data_df.x)
                    * 180
                    / np.pi
                )
                % 360
            )
            diff_h[diff_h >= 180] = 360 - diff_h
            scenario_meta_data_df["alignment_offset_h"] = 180 -  diff_h

        scenario_meta_data_df["los_pred"] = (
            2
            + scenario_meta_data_df.rspower
 Lukas Eller's avatar
Lukas Eller committed
251 252 253 254 255 256 257
            - np.minimum(
                -(
                    antenna_horz(scenario_meta_data_df.alignment_offset_h) +
                    antenna_vert(scenario_meta_data_df.alignment_offset_v)
                ),
                30
            )
 Lukas Eller's avatar
Lukas Eller committed
258 259 260 261 262 263 264 265 266 267
            - pathloss(
                scenario_meta_data_df.d_h,
                scenario_meta_data_df.bs_height,
                use_los=True,
                frequency=scenario_meta_data_df.frequency * 1e-3,
            )
        )
        scenario_meta_data_df["nlos_pred"] = (
            2
            + scenario_meta_data_df.rspower
 Lukas Eller's avatar
Lukas Eller committed
268 269 270 271 272 273 274
            - np.minimum(
                -(
                    antenna_horz(scenario_meta_data_df.alignment_offset_h) +
                    antenna_vert(scenario_meta_data_df.alignment_offset_v)
                ),
                30
            )
 Lukas Eller's avatar
Lukas Eller committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            - pathloss(
                scenario_meta_data_df.d_h,
                scenario_meta_data_df.bs_height,
                use_los=False,
                frequency=scenario_meta_data_df.frequency * 1e-3,
            )
        )

        self._scenario_meta_data_df = scenario_meta_data_df

    def _prepare_los_indicator(self):
        sequence = Sequence(
            self._scenario_meta_data_df,
            100,
            EnvironmentGenerator1D(
                resolution=1, bounding_box=(50, 50, 50, 500), reference_height=50
            ),
            MetaGenerator(),
            RSRPTargetGenerator(),
        )
        is_los_list = []
        for batch_idx in tqdm(range(len(sequence)), desc="Preparing LOS Indicators"):
            ts = sequence[batch_idx]
            for idx in range(len(ts[1])):
                profile = ts[0]["X_img"][idx]
                indicator = (profile[:, 0] - profile[:, 1])[profile[:, 1] > 0]
                is_los_list.append(np.all(indicator <= 0.0))

        self._scenario_meta_data_df["los_indicator_GEOM"] = np.array(is_los_list)

    def _generate_plot(self, prediction_data : pd.DataFrame, planner_name : str, show=False):

        predictions = np.full(self._environment.shape, np.nan)
        for _, meas in tqdm(
            prediction_data.iterrows(),
            total=len(prediction_data),
            desc=f"Preparing Plot for {planner_name}",
        ):
            predictions[2400 - meas.j, meas.i] = meas.pred

        env = np.fliplr(self._environment.read()[0])
        pred = np.flipud(np.fliplr(predictions))
        env[pd.notna(pred)] = np.nan

        fig, ax = plt.subplots(figsize=(10, 10))
        ax.set_aspect("equal")
        plt.scatter([1200], [1200], color="red", s=75)
        if self._config["phi_sec_h"]:
            ax.add_patch(
                matplotlib.patches.Wedge(
                    (1200, 1200),
                    200 / 3,
                    self._config["phi_sec_h"] - 60,
                    self._config["phi_sec_h"] + 60,
                    linestyle="--",
                    color="white",
                    alpha=0.5,
                )
            )
        else:
            ax.add_patch(
                matplotlib.patches.Circle(
                    (1200, 1200), 200 / 3, linestyle="--", color="white", alpha=0.5
                )
            )
        env_im = plt.imshow(env, cmap="Greys", interpolation="none")
        env_im.set_clim(0, 50)
        clb = plt.imshow(pred)
        clb.set_clim(-115, -65)
        plt.colorbar(clb, shrink=0.85)
        plt.xlim(1000, 1400)
        plt.ylim(1000, 1400)
        plt.yticks([1000, 1200, 1400], labels=["-200", "0", "200"])
        plt.xticks([1000, 1200, 1400], labels=["-200", "0", "200"])
        plt.ylabel("[m]")
        plt.xlabel("[m]")
        plt.savefig(
            f"{self._scenario_path}/{planner_name}_prediction.png",
            bbox_inches="tight",
            dpi=200,
        )
        if show:
            plt.show()
        else:
            plt.close()

    def run(self, planner : BasePlanner, show=False):

        prediction_data = planner.predict(self._scenario_meta_data_df)
        prediction_data.to_parquet(
            f"{self._scenario_path}/{planner.name}_prediction.parquet"
        )

        self._generate_plot(prediction_data, planner.name, show=show)


if __name__ == "__main__":

    for scenario_name in os.listdir("scenarios"):
        print(f"Run Scenario {scenario_name}")

        scenario = Scenario(scenario_name).prepare()

        for planner in [RefNetMD(), ConvNetDP(), ConvNetFS()]:
            scenario.run(planner)