Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
differentiable_throughput_model
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Lukas Eller
differentiable_throughput_model
Commits
d0dfb103
Commit
d0dfb103
authored
Nov 10, 2023
by
Lukas Eller
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
e972b93a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
164 additions
and
0 deletions
+164
-0
run_scenario.py
run_scenario.py
+164
-0
No files found.
run_scenario.py
0 → 100644
View file @
d0dfb103
from
throughput_model
import
ThroughputModel
from
scipy
import
spatial
import
numpy
as
np
import
tensorflow
as
tf
import
matplotlib.pyplot
as
plt
from
tqdm
import
tqdm
import
pandas
as
pd
import
seaborn
as
sns
import
warnings
import
os
os
.
environ
[
'TF_CPP_MIN_LOG_LEVEL'
]
=
'2'
warnings
.
filterwarnings
(
'ignore'
)
def
generate_scenario
(
N_Cells
,
N_UEs
,
pathloss_exponent
=
3
):
cell_positions
=
np
.
random
.
uniform
(
-
1e3
,
1e3
,
size
=
(
N_Cells
,
2
))
user_positions
=
np
.
random
.
uniform
(
-
1e3
,
1e3
,
size
=
(
N_UEs
,
2
))
distance_matrix
=
spatial
.
distance_matrix
(
user_positions
,
cell_positions
)
distance_matrix
[
distance_matrix
<
1
]
=
1
PL_matrix
=
10
*
pathloss_exponent
*
np
.
log10
(
distance_matrix
)
return
cell_positions
,
user_positions
,
PL_matrix
'''
Generate a random network configuration, with simple distance based pathloss
'''
if
__name__
==
"__main__"
:
N_cells
=
25
N_UEs
=
1500
print
(
f
"Generating random network deployment with {N_cells} cells and {N_UEs} users"
)
cell_positions
,
user_positions
,
PL_matrix
=
generate_scenario
(
N_cells
,
N_UEs
,
pathloss_exponent
=
3
)
'''
Set the optimization parameters
'''
p_min
,
p_max
=
-
15
,
15
#Minimum and maximum transmit power in dBm
demand
=
"high"
#Current level of demand for [low, medium, high]
noise_level
=
-
120.0
#Noise Level in dBm
throughput_target
=
10
#Lower Optimization Target in MBits
'''
Start the transmit power optimization
'''
throughput_model
=
ThroughputModel
(
resource_blocks
=
100
,
resource_block_bw
=
180e3
,
noise_level
=
noise_level
,
demand
=
demand
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
1e-2
)
gamma_latent
=
tf
.
Variable
(
np
.
random
.
uniform
(
0
,
1
,
size
=
len
(
cell_positions
)),
dtype
=
'float32'
)
gamma
=
tf
.
math
.
sigmoid
((
gamma_latent
-
0.5
)
*
10
)
loss_hist
=
[]
throughput_shared_hist
=
[]
throughput_violations_hist
=
[]
sinr_hist
=
[]
transmit_power_hist
=
[]
connected_UEs_hist
=
[]
for
_
in
tqdm
(
range
(
100
),
desc
=
f
"Optimizing transmit power"
):
with
tf
.
GradientTape
()
as
tape
:
gamma
=
tf
.
math
.
sigmoid
((
gamma_latent
-
0.5
)
*
10
)
p
=
p_min
+
gamma
*
(
p_max
-
p_min
)
R_matrix
=
tf
.
cast
(
p
-
PL_matrix
,
tf
.
float32
)
throughput_shared
,
_
,
SINR
,
connected_UEs_vector
=
throughput_model
(
R_matrix
,
extended
=
True
)
throughput
=
throughput_shared
throughput_violations
=
tf
.
math
.
sigmoid
(
throughput_target
-
throughput
*
1e-6
)
loss
=
tf
.
math
.
reduce_mean
(
throughput_violations
)
grads
=
tape
.
gradient
(
loss
,
[
gamma_latent
])
optimizer
.
apply_gradients
(
zip
(
grads
,
[
gamma_latent
]))
loss_hist
.
append
(
loss
)
throughput_shared_hist
.
append
(
throughput_shared
.
numpy
())
throughput_violations_hist
.
append
(
throughput_violations
.
numpy
())
sinr_hist
.
append
(
SINR
.
numpy
())
transmit_power_hist
.
append
(
p
.
numpy
())
connected_UEs_hist
.
append
(
connected_UEs_vector
.
numpy
())
throughput_shared_hist
=
pd
.
DataFrame
(
throughput_shared_hist
)
plt
.
figure
()
plt
.
plot
(
loss_hist
,
label
=
"Learning Curve"
)
plt
.
ylabel
(
"Ratio of throughput violations"
)
plt
.
xlabel
(
"Gradient descent iterations"
)
plt
.
legend
()
plt
.
show
()
fig
,
(
ax0
,
ax1
)
=
plt
.
subplots
(
nrows
=
1
,
ncols
=
2
,
figsize
=
(
14
,
6
))
fig
.
suptitle
(
"Transmit Power Configuration --- Before and After Optimization"
)
ax0
.
stem
(
transmit_power_hist
[
0
],
label
=
"Transmit Power Configuration"
)
ax0
.
set_ylim
(
p_min
,
p_max
)
ax0
.
set_title
(
"Before Optimization"
)
ax1
.
stem
(
transmit_power_hist
[
-
1
],
label
=
"Transmit Power Configuration"
)
ax1
.
set_ylim
(
p_min
,
p_max
)
ax1
.
set_title
(
"After Optimization"
)
for
ax
in
[
ax0
,
ax1
]:
ax
.
set_xlabel
(
"Cells"
)
ax
.
set_ylabel
(
"Transmit Power, [dBm]"
)
plt
.
show
()
fig
,
(
ax0
,
ax1
)
=
plt
.
subplots
(
nrows
=
1
,
ncols
=
2
,
figsize
=
(
14
,
6
))
fig
.
suptitle
(
"Number of connected UEs per Cell --- Before and After Optimization"
)
ax0
.
stem
(
connected_UEs_hist
[
0
],
label
=
"Number of connected UEs"
)
ax0
.
set_ylim
(
0
,
np
.
max
(
connected_UEs_hist
[
0
])
*
1.1
)
ax0
.
set_title
(
"Before Optimization"
)
ax1
.
stem
(
connected_UEs_hist
[
-
1
],
label
=
"Number of connected UEs"
)
ax1
.
set_ylim
(
0
,
np
.
max
(
connected_UEs_hist
[
0
])
*
1.1
)
ax1
.
set_title
(
"After Optimization"
)
for
ax
in
[
ax0
,
ax1
]:
ax
.
set_xlabel
(
"Cells"
)
ax
.
set_ylabel
(
"Number of connected UEs, [#]"
)
plt
.
show
()
fig
,
(
ax0
,
ax1
)
=
plt
.
subplots
(
nrows
=
1
,
ncols
=
2
,
figsize
=
(
14
,
6
))
fig
.
suptitle
(
"Violated Throughput Target --- Before and After Optimization"
)
clb
=
ax0
.
scatter
(
user_positions
[:,
0
],
user_positions
[:,
1
],
c
=
throughput_violations_hist
[
0
],
label
=
"UE Positions"
,
vmin
=
0
,
vmax
=
1
)
plt
.
colorbar
(
clb
,
label
=
"Throughput Target Violations"
,
shrink
=
0.85
)
ax0
.
scatter
(
cell_positions
[:,
0
],
cell_positions
[:,
1
],
color
=
"red"
,
label
=
"Cell Positions"
)
ax0
.
set_title
(
"Before Optimization"
)
clb
=
ax1
.
scatter
(
user_positions
[:,
0
],
user_positions
[:,
1
],
c
=
throughput_violations_hist
[
-
1
],
label
=
"UE Positions"
,
vmin
=
0
,
vmax
=
1
)
plt
.
colorbar
(
clb
,
label
=
"Throughput Target Violations"
,
shrink
=
0.85
)
ax1
.
scatter
(
cell_positions
[:,
0
],
cell_positions
[:,
1
],
color
=
"red"
,
label
=
"Cell Positions"
)
ax1
.
set_title
(
"After Optimization"
)
for
ax
in
[
ax0
,
ax1
]:
ax
.
set_xlabel
(
"x [m]"
)
ax
.
set_ylabel
(
"y [m]"
)
ax
.
set_aspect
(
"equal"
)
plt
.
show
()
fig
,
(
ax0
,
ax1
)
=
plt
.
subplots
(
nrows
=
1
,
ncols
=
2
,
figsize
=
(
14
,
6
))
fig
.
suptitle
(
"Shared Throughput --- Before and After Optimization"
)
clb
=
ax0
.
scatter
(
user_positions
[:,
0
],
user_positions
[:,
1
],
c
=
throughput_shared_hist
.
iloc
[
0
]
*
1e-6
,
label
=
"UE Positions"
,
vmin
=
0
,
vmax
=
25
)
plt
.
colorbar
(
clb
,
label
=
"UE Shared Throughput, [MBit/s]"
,
shrink
=
0.85
)
ax0
.
scatter
(
cell_positions
[:,
0
],
cell_positions
[:,
1
],
color
=
"red"
,
label
=
"Cell Positions"
)
ax0
.
set_title
(
"Before Optimization"
)
clb
=
ax1
.
scatter
(
user_positions
[:,
0
],
user_positions
[:,
1
],
c
=
throughput_shared_hist
.
iloc
[
-
1
]
*
1e-6
,
label
=
"UE Positions"
,
vmin
=
0
,
vmax
=
25
)
plt
.
colorbar
(
clb
,
label
=
"UE Shared Throughput, [MBit/s]"
,
shrink
=
0.85
)
ax1
.
scatter
(
cell_positions
[:,
0
],
cell_positions
[:,
1
],
color
=
"red"
,
label
=
"Cell Positions"
)
ax1
.
set_title
(
"After Optimization"
)
for
ax
in
[
ax0
,
ax1
]:
ax
.
set_xlabel
(
"x [m]"
)
ax
.
set_ylabel
(
"y [m]"
)
ax
.
set_aspect
(
"equal"
)
plt
.
show
()
plt
.
figure
()
sns
.
ecdfplot
(
throughput_shared_hist
.
iloc
[
0
]
*
1e-6
,
label
=
"Before Optimization"
)
sns
.
ecdfplot
(
throughput_shared_hist
.
iloc
[
-
1
]
*
1e-6
,
label
=
"After Optimization"
)
plt
.
vlines
(
throughput_target
,
0
,
1
,
label
=
"Threshold"
,
linestyles
=
"dashed"
,
color
=
"gray"
)
plt
.
legend
()
plt
.
xlabel
(
"UE Shared Throughput, [MBit/s]"
)
plt
.
ylabel
(
"ECDF"
)
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment