/** * \file Math.hpp * \brief Header for GeographicLib::Math class * * Copyright (c) Charles Karney (2008-2019) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ // Constants.hpp includes Math.hpp. Place this include outside Math.hpp's // include guard to enforce this ordering. #include "Constants.hpp" #if !defined(GEOGRAPHICLIB_MATH_HPP) #define GEOGRAPHICLIB_MATH_HPP 1 /** * Are C++11 math functions available? **********************************************************************/ #if !defined(GEOGRAPHICLIB_CXX11_MATH) // Recent versions of g++ -std=c++11 (4.7 and later?) set __cplusplus to 201103 // and support the new C++11 mathematical functions, std::atanh, etc. However // the Android toolchain, which uses g++ -std=c++11 (4.8 as of 2014-03-11, // according to Pullan Lu), does not support std::atanh. Android toolchains // might define __ANDROID__ or ANDROID; so need to check both. With OSX the // version is GNUC version 4.2 and __cplusplus is set to 201103, so remove the // version check on GNUC. # if defined(__GNUC__) && __cplusplus >= 201103 && \ !(defined(__ANDROID__) || defined(ANDROID) || defined(__CYGWIN__)) # define GEOGRAPHICLIB_CXX11_MATH 1 // Visual C++ 12 supports these functions # elif defined(_MSC_VER) && _MSC_VER >= 1800 # define GEOGRAPHICLIB_CXX11_MATH 1 # else # define GEOGRAPHICLIB_CXX11_MATH 0 # endif #endif #if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN) # define GEOGRAPHICLIB_WORDS_BIGENDIAN 0 #endif #if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE) # define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0 #endif #if !defined(GEOGRAPHICLIB_PRECISION) /** * The precision of floating point numbers used in %GeographicLib. 1 means * float (single precision); 2 (the default) means double; 3 means long double; * 4 is reserved for quadruple precision. Nearly all the testing has been * carried out with doubles and that's the recommended configuration. In order * for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be * defined. Note that with Microsoft Visual Studio, long double is the same as * double. **********************************************************************/ # define GEOGRAPHICLIB_PRECISION 2 #endif #include #include #include #if GEOGRAPHICLIB_PRECISION == 4 #include #include #include #elif GEOGRAPHICLIB_PRECISION == 5 #include #endif #if GEOGRAPHICLIB_PRECISION > 3 // volatile keyword makes no sense for multiprec types #define GEOGRAPHICLIB_VOLATILE // Signal a convergence failure with multiprec types by throwing an exception // at loop exit. #define GEOGRAPHICLIB_PANIC \ (throw GeographicLib::GeographicErr("Convergence failure"), false) #else #define GEOGRAPHICLIB_VOLATILE volatile // Ignore convergence failures with standard floating points types by allowing // loop to exit cleanly. #define GEOGRAPHICLIB_PANIC false #endif namespace GeographicLib { /** * \brief Mathematical functions needed by %GeographicLib * * Define mathematical functions in order to localize system dependencies and * to provide generic versions of the functions. In addition define a real * type to be used by %GeographicLib. * * Example of use: * \include example-Math.cpp **********************************************************************/ class Math { private: void dummy(); // Static check for GEOGRAPHICLIB_PRECISION Math(); // Disable constructor public: #if GEOGRAPHICLIB_HAVE_LONG_DOUBLE /** * The extended precision type for real numbers, used for some testing. * This is long double on computers with this type; otherwise it is double. **********************************************************************/ typedef long double extended; #else typedef double extended; #endif #if GEOGRAPHICLIB_PRECISION == 2 /** * The real type for %GeographicLib. Nearly all the testing has been done * with \e real = double. However, the algorithms should also work with * float and long double (where available). (CAUTION: reasonable * accuracy typically cannot be obtained using floats.) **********************************************************************/ typedef double real; #elif GEOGRAPHICLIB_PRECISION == 1 typedef float real; #elif GEOGRAPHICLIB_PRECISION == 3 typedef extended real; #elif GEOGRAPHICLIB_PRECISION == 4 typedef boost::multiprecision::float128 real; #elif GEOGRAPHICLIB_PRECISION == 5 typedef mpfr::mpreal real; #else typedef double real; #endif /** * @return the number of bits of precision in a real number. **********************************************************************/ static int digits(); /** * Set the binary precision of a real number. * * @param[in] ndigits the number of bits of precision. * @return the resulting number of bits of precision. * * This only has an effect when GEOGRAPHICLIB_PRECISION = 5. See also * Utility::set_digits for caveats about when this routine should be * called. **********************************************************************/ static int set_digits(int ndigits); /** * @return the number of decimal digits of precision in a real number. **********************************************************************/ static int digits10(); /** * Number of additional decimal digits of precision for real relative to * double (0 for float). **********************************************************************/ static int extra_digits(); /** * true if the machine is big-endian. **********************************************************************/ static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN; /** * @tparam T the type of the returned value. * @return π. **********************************************************************/ template static T pi() { using std::atan2; static const T pi = atan2(T(0), T(-1)); return pi; } /** * A synonym for pi(). **********************************************************************/ static real pi() { return pi(); } /** * @tparam T the type of the returned value. * @return the number of radians in a degree. **********************************************************************/ template static T degree() { static const T degree = pi() / 180; return degree; } /** * A synonym for degree(). **********************************************************************/ static real degree() { return degree(); } /** * Square a number. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return x2. **********************************************************************/ template static T sq(T x) { return x * x; } /** * The hypotenuse function avoiding underflow and overflow. * * @tparam T the type of the arguments and the returned value. * @param[in] x * @param[in] y * @return sqrt(x2 + y2). **********************************************************************/ template static T hypot(T x, T y); /** * exp(\e x) − 1 accurate near \e x = 0. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return exp(\e x) − 1. **********************************************************************/ template static T expm1(T x); /** * log(1 + \e x) accurate near \e x = 0. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return log(1 + \e x). **********************************************************************/ template static T log1p(T x); /** * The inverse hyperbolic sine function. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return asinh(\e x). **********************************************************************/ template static T asinh(T x); /** * The inverse hyperbolic tangent function. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return atanh(\e x). **********************************************************************/ template static T atanh(T x); /** * Copy the sign. * * @tparam T the type of the argument. * @param[in] x gives the magitude of the result. * @param[in] y gives the sign of the result. * @return value with the magnitude of \e x and with the sign of \e y. * * This routine correctly handles the case \e y = −0, returning * &minus|x|. **********************************************************************/ template static T copysign(T x, T y); /** * The cube root function. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return the real cube root of \e x. **********************************************************************/ template static T cbrt(T x); /** * The remainder function. * * @tparam T the type of the arguments and the returned value. * @param[in] x * @param[in] y * @return the remainder of \e x/\e y in the range [−\e y/2, \e y/2]. **********************************************************************/ template static T remainder(T x, T y); /** * The remquo function. * * @tparam T the type of the arguments and the returned value. * @param[in] x * @param[in] y * @param[out] n the low 3 bits of the quotient * @return the remainder of \e x/\e y in the range [−\e y/2, \e y/2]. **********************************************************************/ template static T remquo(T x, T y, int* n); /** * The round function. * * @tparam T the type of the argument and the returned value. * @param[in] x * @return \e x round to the nearest integer (ties round away from 0). **********************************************************************/ template static T round(T x); /** * The lround function. * * @tparam T the type of the argument. * @param[in] x * @return \e x round to the nearest integer as a long int (ties round away * from 0). * * If the result does not fit in a long int, the return value is undefined. **********************************************************************/ template static long lround(T x); /** * Fused multiply and add. * * @tparam T the type of the arguments and the returned value. * @param[in] x * @param[in] y * @param[in] z * @return xy + z, correctly rounded (on those platforms with * support for the fma instruction). * * On platforms without the fma instruction, no attempt is * made to improve on the result of a rounded multiplication followed by a * rounded addition. **********************************************************************/ template static T fma(T x, T y, T z); /** * Normalize a two-vector. * * @tparam T the type of the argument and the returned value. * @param[in,out] x on output set to x/hypot(x, y). * @param[in,out] y on output set to y/hypot(x, y). **********************************************************************/ template static void norm(T& x, T& y) { T h = hypot(x, y); x /= h; y /= h; } /** * The error-free sum of two numbers. * * @tparam T the type of the argument and the returned value. * @param[in] u * @param[in] v * @param[out] t the exact error given by (\e u + \e v) - \e s. * @return \e s = round(\e u + \e v). * * See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B. (Note that \e t can be * the same as one of the first two arguments.) **********************************************************************/ template static T sum(T u, T v, T& t); /** * Evaluate a polynomial. * * @tparam T the type of the arguments and returned value. * @param[in] N the order of the polynomial. * @param[in] p the coefficient array (of size \e N + 1). * @param[in] x the variable. * @return the value of the polynomial. * * Evaluate y = ∑n=0..N * pn xNn. * Return 0 if \e N < 0. Return p0, if \e N = 0 (even * if \e x is infinite or a nan). The evaluation uses Horner's method. **********************************************************************/ template static T polyval(int N, const T p[], T x) // This used to employ Math::fma; but that's too slow and it seemed not to // improve the accuracy noticeably. This might change when there's direct // hardware support for fma. { T y = N < 0 ? 0 : *p++; while (--N >= 0) y = y * x + *p++; return y; } /** * Normalize an angle. * * @tparam T the type of the argument and returned value. * @param[in] x the angle in degrees. * @return the angle reduced to the range (−180°, 180°]. * * The range of \e x is unrestricted. **********************************************************************/ template static T AngNormalize(T x) { x = remainder(x, T(360)); return x != -180 ? x : 180; } /** * Normalize a latitude. * * @tparam T the type of the argument and returned value. * @param[in] x the angle in degrees. * @return x if it is in the range [−90°, 90°], otherwise * return NaN. **********************************************************************/ template static T LatFix(T x) { using std::abs; return abs(x) > 90 ? NaN() : x; } /** * The exact difference of two angles reduced to * (−180°, 180°]. * * @tparam T the type of the arguments and returned value. * @param[in] x the first angle in degrees. * @param[in] y the second angle in degrees. * @param[out] e the error term in degrees. * @return \e d, the truncated value of \e y − \e x. * * This computes \e z = \e y − \e x exactly, reduced to * (−180°, 180°]; and then sets \e z = \e d + \e e where \e d * is the nearest representable number to \e z and \e e is the truncation * error. If \e d = −180, then \e e > 0; If \e d = 180, then \e e * ≤ 0. **********************************************************************/ template static T AngDiff(T x, T y, T& e) { T t, d = AngNormalize(sum(remainder(-x, T(360)), remainder( y, T(360)), t)); // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and // abs(t) <= eps (eps = 2^-45 for doubles). The only case where the // addition of t takes the result outside the range (-180,180] is d = 180 // and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since // sum would have returned the exact result in such a case (i.e., given t // = 0). return sum(d == 180 && t > 0 ? -180 : d, t, e); } /** * Difference of two angles reduced to [−180°, 180°] * * @tparam T the type of the arguments and returned value. * @param[in] x the first angle in degrees. * @param[in] y the second angle in degrees. * @return \e y − \e x, reduced to the range [−180°, * 180°]. * * The result is equivalent to computing the difference exactly, reducing * it to (−180°, 180°] and rounding the result. Note that * this prescription allows −180° to be returned (e.g., if \e x * is tiny and negative and \e y = 180°). **********************************************************************/ template static T AngDiff(T x, T y) { T e; return AngDiff(x, y, e); } /** * Coarsen a value close to zero. * * @tparam T the type of the argument and returned value. * @param[in] x * @return the coarsened value. * * The makes the smallest gap in \e x = 1/16 − nextafter(1/16, 0) = * 1/257 for reals = 0.7 pm on the earth if \e x is an angle in * degrees. (This is about 1000 times more resolution than we get with * angles around 90°.) We use this to avoid having to deal with near * singular cases when \e x is non-zero but tiny (e.g., * 10−200). This converts −0 to +0; however tiny * negative numbers get converted to −0. **********************************************************************/ template static T AngRound(T x); /** * Evaluate the sine and cosine function with the argument in degrees * * @tparam T the type of the arguments. * @param[in] x in degrees. * @param[out] sinx sin(x). * @param[out] cosx cos(x). * * The results obey exactly the elementary properties of the trigonometric * functions, e.g., sin 9° = cos 81° = − sin 123456789°. * If x = −0, then \e sinx = −0; this is the only case where * −0 is returned. **********************************************************************/ template static void sincosd(T x, T& sinx, T& cosx); /** * Evaluate the sine function with the argument in degrees * * @tparam T the type of the argument and the returned value. * @param[in] x in degrees. * @return sin(x). **********************************************************************/ template static T sind(T x); /** * Evaluate the cosine function with the argument in degrees * * @tparam T the type of the argument and the returned value. * @param[in] x in degrees. * @return cos(x). **********************************************************************/ template static T cosd(T x); /** * Evaluate the tangent function with the argument in degrees * * @tparam T the type of the argument and the returned value. * @param[in] x in degrees. * @return tan(x). * * If \e x = ±90°, then a suitably large (but finite) value is * returned. **********************************************************************/ template static T tand(T x); /** * Evaluate the atan2 function with the result in degrees * * @tparam T the type of the arguments and the returned value. * @param[in] y * @param[in] x * @return atan2(y, x) in degrees. * * The result is in the range (−180° 180°]. N.B., * atan2d(±0, −1) = +180°; atan2d(−ε, * −1) = −180°, for ε positive and tiny; * atan2d(±0, +1) = ±0°. **********************************************************************/ template static T atan2d(T y, T x); /** * Evaluate the atan function with the result in degrees * * @tparam T the type of the argument and the returned value. * @param[in] x * @return atan(x) in degrees. **********************************************************************/ template static T atand(T x); /** * Evaluate e atanh(e x) * * @tparam T the type of the argument and the returned value. * @param[in] x * @param[in] es the signed eccentricity = sign(e2) * sqrt(|e2|) * @return e atanh(e x) * * If e2 is negative (e is imaginary), the * expression is evaluated in terms of atan. **********************************************************************/ template static T eatanhe(T x, T es); /** * tanχ in terms of tanφ * * @tparam T the type of the argument and the returned value. * @param[in] tau τ = tanφ * @param[in] es the signed eccentricity = sign(e2) * sqrt(|e2|) * @return τ′ = tanχ * * See Eqs. (7--9) of * C. F. F. Karney, * * Transverse Mercator with an accuracy of a few nanometers, * J. Geodesy 85(8), 475--485 (Aug. 2011) * (preprint * arXiv:1002.1417). **********************************************************************/ template static T taupf(T tau, T es); /** * tanφ in terms of tanχ * * @tparam T the type of the argument and the returned value. * @param[in] taup τ′ = tanχ * @param[in] es the signed eccentricity = sign(e2) * sqrt(|e2|) * @return τ = tanφ * * See Eqs. (19--21) of * C. F. F. Karney, * * Transverse Mercator with an accuracy of a few nanometers, * J. Geodesy 85(8), 475--485 (Aug. 2011) * (preprint * arXiv:1002.1417). **********************************************************************/ template static T tauf(T taup, T es); /** * Test for finiteness. * * @tparam T the type of the argument. * @param[in] x * @return true if number is finite, false if NaN or infinite. **********************************************************************/ template static bool isfinite(T x); /** * The NaN (not a number) * * @tparam T the type of the returned value. * @return NaN if available, otherwise return the max real of type T. **********************************************************************/ template static T NaN(); /** * A synonym for NaN(). **********************************************************************/ static real NaN() { return NaN(); } /** * Test for NaN. * * @tparam T the type of the argument. * @param[in] x * @return true if argument is a NaN. **********************************************************************/ template static bool isnan(T x); /** * Infinity * * @tparam T the type of the returned value. * @return infinity if available, otherwise return the max real. **********************************************************************/ template static T infinity(); /** * A synonym for infinity(). **********************************************************************/ static real infinity() { return infinity(); } /** * Swap the bytes of a quantity * * @tparam T the type of the argument and the returned value. * @param[in] x * @return x with its bytes swapped. **********************************************************************/ template static T swab(T x) { union { T r; unsigned char c[sizeof(T)]; } b; b.r = x; for (int i = sizeof(T)/2; i--; ) std::swap(b.c[i], b.c[sizeof(T) - 1 - i]); return b.r; } }; } // namespace GeographicLib #endif // GEOGRAPHICLIB_MATH_HPP