#include #include "snake.h" #include #include #include #include #include #include "clipper/clipper.hpp" #define CLIPPER_SCALE 10000 #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" using namespace operations_research; #ifndef NDEBUG //#define SHOW_TIME #endif namespace bg = boost::geometry; namespace trans = bg::strategy::transform; namespace snake { //========================================================================= // Geometry stuff. //========================================================================= BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian) void polygonCenter(const BoostPolygon &polygon, BoostPoint ¢er) { using namespace mapbox; if (polygon.outer().empty()) return; geometry::polygon p; geometry::linear_ring lr1; for (size_t i = 0; i < polygon.outer().size(); ++i) { geometry::point vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>()); lr1.push_back(vertex); } p.push_back(lr1); geometry::point c = polylabel(p); center.set<0>(c.x); center.set<1>(c.y); } void minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox) { /* Find the minimum-area bounding box of a set of 2D points The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates. The first and last points points must be the same, making a closed polygon. This program finds the rotation angles of each edge of the convex polygon, then tests the area of a bounding box aligned with the unique angles in 90 degrees of the 1st Quadrant. Returns the Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version) Results verified using Matlab Copyright (c) 2013, David Butterworth, University of Queensland All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Willow Garage, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ if (polygon.outer().empty()) return; BoostPolygon convex_hull; bg::convex_hull(polygon, convex_hull); //cout << "Convex hull: " << bg::wkt(convex_hull) << endl; //# Compute edges (x2-x1,y2-y1) std::vector edges; auto convex_hull_outer = convex_hull.outer(); for (long i=0; i < long(convex_hull_outer.size())-1; ++i) { BoostPoint p1 = convex_hull_outer.at(i); BoostPoint p2 = convex_hull_outer.at(i+1); double edge_x = p2.get<0>() - p1.get<0>(); double edge_y = p2.get<1>() - p1.get<1>(); edges.push_back(BoostPoint{edge_x, edge_y}); } // cout << "Edges: "; // for (auto e : edges) // cout << e.get<0>() << " " << e.get<1>() << ","; // cout << endl; // Calculate unique edge angles atan2(y/x) double angle_scale = 1e3; std::set angles_long; for (auto vertex : edges) { double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2); angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers angles_long.insert(long(round(angle*angle_scale))); } std::vector edge_angles; for (auto a : angles_long) edge_angles.push_back(double(a)/angle_scale); // cout << "Unique angles: "; // for (auto e : edge_angles) // cout << e*180/M_PI << ","; // cout << endl; double min_area = std::numeric_limits::infinity(); // Test each angle to find bounding box with smallest area // print "Testing", len(edge_angles), "possible rotations for bounding box... \n" for (double angle : edge_angles){ trans::rotate_transformer rotate(angle*180/M_PI); BoostPolygon hull_rotated; bg::transform(convex_hull, hull_rotated, rotate); //cout << "Convex hull rotated: " << bg::wkt(hull_rotated) << endl; bg::model::box box; bg::envelope(hull_rotated, box); // cout << "Bounding box: " << bg::wkt>(box) << endl; //# print "Rotated hull points are \n", rot_points BoostPoint min_corner = box.min_corner(); BoostPoint max_corner = box.max_corner(); double min_x = min_corner.get<0>(); double max_x = max_corner.get<0>(); double min_y = min_corner.get<1>(); double max_y = max_corner.get<1>(); // cout << "min_x: " << min_x << endl; // cout << "max_x: " << max_x << endl; // cout << "min_y: " << min_y << endl; // cout << "max_y: " << max_y << endl; // Calculate height/width/area of this bounding rectangle double width = max_x - min_x; double height = max_y - min_y; double area = width * height; // cout << "Width: " << width << endl; // cout << "Height: " << height << endl; // cout << "area: " << area << endl; // cout << "angle: " << angle*180/M_PI << endl; // Store the smallest rect found first (a simple convex hull might have 2 answers with same area) if (area < min_area){ min_area = area; minBBox.angle = angle; minBBox.width = width; minBBox.height = height; minBBox.corners.clear(); minBBox.corners.outer().push_back(BoostPoint{min_x, min_y}); minBBox.corners.outer().push_back(BoostPoint{min_x, max_y}); minBBox.corners.outer().push_back(BoostPoint{max_x, max_y}); minBBox.corners.outer().push_back(BoostPoint{max_x, min_y}); minBBox.corners.outer().push_back(BoostPoint{min_x, min_y}); } //cout << endl << endl; } // Transform corners of minimal bounding box. trans::rotate_transformer rotate(-minBBox.angle*180/M_PI); BoostPolygon rotated_polygon; bg::transform(minBBox.corners, rotated_polygon, rotate); minBBox.corners = rotated_polygon; } void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset, double offset) { bg::strategy::buffer::distance_symmetric distance_strategy(offset); bg::strategy::buffer::join_miter join_strategy(3); bg::strategy::buffer::end_flat end_strategy; bg::strategy::buffer::point_square point_strategy; bg::strategy::buffer::side_straight side_strategy; bg::model::multi_polygon result; bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy); if (result.size() > 0) polygonOffset = result[0]; } void graphFromPolygon(const BoostPolygon &polygon, const BoostLineString &vertices, Matrix &graph) { size_t n = graph.getN(); for (size_t i=0; i < n; ++i) { BoostPoint v1 = vertices[i]; for (size_t j=i+1; j < n; ++j){ BoostPoint v2 = vertices[j]; BoostLineString path{v1, v2}; double distance = 0; if (!bg::within(path, polygon)) distance = std::numeric_limits::infinity(); else distance = bg::length(path); graph.set(i, j, distance); graph.set(j, i, distance); } } } bool dijkstraAlgorithm(const size_t numElements, size_t startIndex, size_t endIndex, std::vector &elementPath, std::function distanceDij) { if ( startIndex >= numElements || endIndex >= numElements || endIndex == startIndex) { return false; } // Node struct // predecessorIndex is the index of the predecessor node (nodeList[predecessorIndex]) // distance is the distance between the node and the start node // node number is stored by the position in nodeList struct Node{ int predecessorIndex = -1; double distance = std::numeric_limits::infinity(); }; // The list with all Nodes (elements) std::vector nodeList(numElements); // This list will be initalized with indices referring to the elements of nodeList. // Elements will be successively remove during the execution of the Dijkstra Algorithm. std::vector workingSet(numElements); //append elements to node list for (size_t i = 0; i < numElements; ++i) workingSet[i] = i; nodeList[startIndex].distance = 0; // Dijkstra Algorithm // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus while (workingSet.size() > 0) { // serach Node with minimal distance double minDist = std::numeric_limits::infinity(); int minDistIndex_WS = -1; // WS = workinSet for (size_t i = 0; i < workingSet.size(); ++i) { const int nodeIndex = workingSet.at(i); const double dist = nodeList.at(nodeIndex).distance; if (dist < minDist) { minDist = dist; minDistIndex_WS = i; } } if (minDistIndex_WS == -1) return false; size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList workingSet.erase(workingSet.begin()+minDistIndex_WS); if (indexU_NL == endIndex) // shortest path found break; const double distanceU = nodeList.at(indexU_NL).distance; //update distance for (size_t i = 0; i < workingSet.size(); ++i) { int indexV_NL = workingSet[i]; // NL = nodeList Node* v = &nodeList[indexV_NL]; double dist = distanceDij(indexU_NL, indexV_NL); // is ther an alternative path which is shorter? double alternative = distanceU + dist; if (alternative < v->distance) { v->distance = alternative; v->predecessorIndex = indexU_NL; } } } // end Djikstra Algorithm // reverse assemble path int e = endIndex; while (1) { if (e == -1) { if (elementPath[0] == startIndex)// check if starting point was reached break; return false; } elementPath.insert(elementPath.begin(), e); //Update Node e = nodeList[e].predecessorIndex; } return true; } void toDistanceMatrix(Matrix &graph) { size_t n = graph.getN(); auto distance = [graph](size_t i, size_t j){ return graph.get(i,j); }; std::vector path; for (size_t i=0; i < n; ++i) { for (size_t j=i+1; j < n; ++j){ double d = graph.get(i,j); if (!std::isinf(d)) continue; path.clear(); bool ret = dijkstraAlgorithm(n, i, j, path, distance); assert(ret); (void)ret; // cout << "(" << i << "," << j << ") d: " << d << endl; // cout << "Path size: " << path.size() << endl; // for (auto idx : path) // cout << idx << " "; // cout << endl; d = 0; for (long k=0; k < long(path.size())-1; ++k) { size_t idx0 = path[k]; size_t idx1 = path[k+1]; double d0 = graph.get(idx0, idx1); assert(std::isinf(d0) == false); d += d0; } graph.set(i, j, d); graph.set(j, i, d); } } } void shortestPathFromGraph(const Matrix &graph, size_t startIndex, size_t endIndex, std::vector &pathIdx) { if (!std::isinf(graph.get(startIndex, endIndex))){ pathIdx.push_back(startIndex); pathIdx.push_back(endIndex); } else { auto distance = [graph](size_t i, size_t j){ return graph.get(i, j); }; bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx, distance); assert(ret); (void)ret; } //========================================================================= // Scenario calculation. //========================================================================= }Scenario::Scenario() : _tileWidth(5) , _tileHeight(5) , _minTileArea(0) , _needsUpdate(true) { } void Scenario::setMeasurementArea(const BoostPolygon &area) { _needsUpdate = true; _mArea = area; } void Scenario::setServiceArea(const BoostPolygon &area) { _needsUpdate = true; _sArea = area; } void Scenario::setCorridor(const BoostPolygon &area) { _needsUpdate = true; _corridor = area; } BoostPolygon &Scenario::measurementArea() { _needsUpdate = true; return _mArea; } BoostPolygon &Scenario::serviceArea() { _needsUpdate = true; return _sArea; } BoostPolygon &Scenario::corridor() { _needsUpdate = true; return _corridor; } const BoundingBox &Scenario::mAreaBoundingBox() const { return _mAreaBoundingBox; } const BoostPolygon &Scenario::measurementArea() const { return _mArea; } const BoostPolygon &Scenario::serviceArea() const { return _sArea; } const BoostPolygon &Scenario::corridor() const { return _corridor; } BoostPolygon &Scenario::measurementArea() { return _mArea; } BoostPolygon &Scenario::serviceArea() { return _sArea; } BoostPolygon &Scenario::corridor() { return _corridor; } const BoostPolygon &Scenario::joinedArea() const { return _jArea; } const vector &Scenario::tiles() const{ return _tiles; } const BoostLineString &Scenario::tileCenterPoints() const{ return _tileCenterPoints; } const BoundingBox &Scenario::measurementAreaBBox() const{ return _mAreaBoundingBox; } const BoostPoint &Scenario::homePositon() const{ return _homePosition; } bool Scenario::update() { if ( !_needsUpdate ) return true; if (!_calculateBoundingBox()) return false; if (!_calculateTiles()) return false; if (!_calculateJoinedArea()) return false; _needsUpdate = false; return true; } bool Scenario::_calculateBoundingBox() { minimalBoundingBox(_mArea, _mAreaBoundingBox); return true; } /** * Devides the (measurement area) bounding box into tiles and clips it to the measurement area. * * Devides the (measurement area) bounding box into tiles of width \p tileWidth and height \p tileHeight. * Clips the resulting tiles to the measurement area. Tiles are rejected, if their area is smaller than \p minTileArea. * The function assumes that \a _mArea and \a _mAreaBoundingBox have correct values. \see \ref Scenario::_areas2enu() and \ref * Scenario::_calculateBoundingBox(). * * @param tileWidth The width (>0) of a tile. * @param tileHeight The heigth (>0) of a tile. * @param minTileArea The minimal area (>0) of a tile. * * @return Returns true if successful. */ bool Scenario::_calculateTiles() { _tiles.clear(); _tileCenterPoints.clear(); if (_tileWidth <= 0 || _tileHeight <= 0 || _minTileArea < 0) { errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive."; return false; } double bbox_width = _mAreaBoundingBox.width; double bbox_height = _mAreaBoundingBox.height; BoostPoint origin = _mAreaBoundingBox.corners.outer()[0]; //cout << "Origin: " << origin[0] << " " << origin[1] << endl; // Transform _mArea polygon to bounding box coordinate system. trans::rotate_transformer rotate(_mAreaBoundingBox.angle*180/M_PI); trans::translate_transformer translate(-origin.get<0>(), -origin.get<1>()); BoostPolygon translated_polygon; BoostPolygon rotated_polygon; boost::geometry::transform(_mArea, translated_polygon, translate); boost::geometry::transform(translated_polygon, rotated_polygon, rotate); bg::correct(rotated_polygon); //cout << bg::wkt(rotated_polygon) << endl; size_t i_max = ceil(bbox_width/tileWidth); size_t j_max = ceil(bbox_height/tileHeight); if (i_max < 1 || j_max < 1) { errorString = "Tile width or Tile height to large."; return false; } trans::rotate_transformer rotate_back(-_mAreaBoundingBox.angle*180/M_PI); trans::translate_transformer translate_back(origin.get<0>(), origin.get<1>()); for (size_t i = 0; i < i_max; ++i){ double x_min = tileWidth*i; double x_max = x_min + tileWidth; for (size_t j = 0; j < j_max; ++j){ double y_min = tileHeight*j; double y_max = y_min + tileHeight; BoostPolygon tile_unclipped; tile_unclipped.outer().push_back(BoostPoint{x_min, y_min}); tile_unclipped.outer().push_back(BoostPoint{x_min, y_max}); tile_unclipped.outer().push_back(BoostPoint{x_max, y_max}); tile_unclipped.outer().push_back(BoostPoint{x_max, y_min}); tile_unclipped.outer().push_back(BoostPoint{x_min, y_min}); std::deque boost_tiles; if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles)) continue; for (BoostPolygon t : boost_tiles) { if (bg::area(t) > minTileArea){ // Transform boost_tile to world coordinate system. BoostPolygon rotated_tile; BoostPolygon translated_tile; boost::geometry::transform(t, rotated_tile, rotate_back); boost::geometry::transform(rotated_tile, translated_tile, translate_back); // Store tile and calculate center point. _tiles.push_back(translated_tile); BoostPoint tile_center; polygonCenter(translated_tile, tile_center); _tileCenterPoints.push_back(tile_center); } } } } if (_tiles.size() < 1){ errorString = "No tiles calculated. Is the minTileArea parameter large enough?"; return false; } return true; } bool Scenario::_calculateJoinedArea() { _jArea.clear(); // Measurement area and service area overlapping? bool overlapingSerMeas = bg::intersects(_mArea, _sArea) ? true : false; bool corridorValid = _corridor.outer().size() > 0 ? true : false; // Check if corridor is connecting measurement area and service area. bool corridor_is_connection = false; if (corridorValid) { // Corridor overlaping with measurement area? if ( bg::intersects(_corridior, _mArea) ) { // Corridor overlaping with service area? if ( bg::intersects(_corridior, _sArea) ) { corridor_is_connection = true; } } } // Are areas joinable? std::deque sol; BoostPolygon partialArea = _mArea; if (overlapingSerMeas){ if(corridor_is_connection){ bg::union_(partialArea, _corridior, sol); } } else if (corridor_is_connection){ bg::union_(partialArea, _corridior, sol); } else { errorString = "Areas are not overlapping"; return false; } if (sol.size() > 0) { partialArea = sol[0]; sol.clear(); } // Join areas. bg::union_(partialArea, _sArea, sol); if (sol.size() > 0) { _jArea = sol[0]; } else { return false; } return true; } double Scenario::minTileArea() const { return _minTileArea; } void Scenario::setMinTileArea(double minTileArea) { if ( minTileArea >= 0){ _needsUpdate = true; _minTileArea = minTileArea; } } double Scenario::tileHeight() const { return _tileHeight; } void Scenario::setTileHeight(double tileHeight) { if ( tileHeight > 0) { _needsUpdate = true; _tileHeight = tileHeight; } } double Scenario::tileWidth() const { return _tileWidth; } void Scenario::setTileWidth(double tileWidth) { if ( tileWidth > 0 ){ _needsUpdate = true; _tileWidth = tileWidth; } } //========================================================================= // Tile calculation. //========================================================================= bool joinAreas(const std::vector &areas, BoostPolygon &joinedArea) { if (areas.size() < 1) return false; std::deque idxList; for(size_t i = 1; i < areas.size(); ++i) idxList.push_back(i); joinedArea = areas[0]; std::deque sol; while (idxList.size() > 0){ bool success = false; for (auto it = idxList.begin(); it != idxList.end(); ++it){ bg::union_(joinedArea, areas[*it], sol); if (sol.size() > 0) { joinedArea = sol[0]; sol.clear; idxList.erase(it); success = true; break; } } if ( !success ) return false; } return true; } BoundingBox::BoundingBox() : width(0) , height(0) , angle(0) { } void BoundingBox::clear() { width = 0; height = 0; angle = 0; corners.clear(); } Flightplan::Flightplan(ScenarioCPtr s, ProgressCPtr p) : _scenario(s) , _progress(p) { } double Flightplan::lineDistance() const { return _lineDistance; } void Flightplan::setLineDistance(double lineDistance) { _lineDistance = lineDistance; } double Flightplan::minTransectLength() const { return _minTransectLength; } void Flightplan::setMinTransectLength(double minTransectLength) { _minTransectLength = minTransectLength; } Flightplan::ScenarioCPtr Flightplan::scenario() const { return _scenario; } void Flightplan::setScenario(ScenarioCPtr &scenario) { _scenario = scenario; } Flightplan::ProgressCPtr Flightplan::progress() const { return _progress; } void Flightplan::setProgress(ProgressCPtr &progress) { _progress = progress; } struct Flightplan::RoutingDataModel{ Matrix distanceMatrix; long numVehicles; RoutingIndexManager::NodeIndex depot; }; bool Flightplan::update() { _waypoints.clear(); _arrivalPath.clear(); _returnPath.clear(); #ifdef SHOW_TIME auto start = std::chrono::high_resolution_clock::now(); #endif if (!_generateTransects()) return false; #ifdef SHOW_TIME auto delta = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - start); cout << endl; cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl; #endif //======================================= // Route Transects using Google or-tools. //======================================= // Offset joined area. const BoostPolygon &jArea = _scenario->joinedArea(); BoostPolygon jAreaOffset; offsetPolygon(jArea, jAreaOffset, detail::offsetConstant); // Create vertex list; BoostLineString vertices; size_t n_t = _transects.size()*2; size_t n0 = n_t+1; vertices.reserve(n0); for (auto& lstring : _transects){ for (auto& vertex : lstring){ vertices.push_back(vertex); } } vertices.push_back(_scenario->homePositon()); for (long i=0; i connectionGraph(n1, n1); #ifdef SHOW_TIME start = std::chrono::high_resolution_clock::now(); #endif _generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph); #ifdef SHOW_TIME delta = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - start); cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl; #endif // Create Routing Index Manager. RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles, dataModel.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&dataModel, &manager](int64 from_index, int64 to_index) -> int64 { // Convert from routing variable Index to distance matrix NodeIndex. auto from_node = manager.IndexToNode(from_index).value(); auto to_node = manager.IndexToNode(to_index).value(); return dataModel.distanceMatrix.get(from_node, to_node); }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Define Constraints. size_t n = _transects.size()*2; Solver *solver = routing.solver(); for (size_t i=0; iIsEqual(idx1); // auto cond1 = routing.NextVar(idx1)->IsEqual(idx0); // auto c = solver->MakeNonEquality(cond0, cond1); // solver->AddConstraint(c); // alternative auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1)); auto cond0 = routing.NextVar(idx0)->IsEqual(idx1); auto cond1 = routing.NextVar(idx1)->IsEqual(idx0); vector conds{cond0, cond1}; auto c = solver->MakeAllDifferent(conds); solver->MakeRejectFilter(); solver->AddConstraint(c); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds tMax->set_seconds(10); searchParameters.set_allocated_time_limit(tMax); // Solve the problem. #ifdef SHOW_TIME start = std::chrono::high_resolution_clock::now(); #endif const Assignment* solution = routing.SolveWithParameters(searchParameters); #ifdef SHOW_TIME delta = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - start); cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl; #endif if (!solution || solution->Size() <= 1){ errorString = "Not able to solve the routing problem."; return false; } // Extract waypoints from solution. long index = routing.Start(0); std::vector route; route.push_back(manager.IndexToNode(index).value()); while (!routing.IsEnd(index)){ index = solution->Value(routing.NextVar(index)); route.push_back(manager.IndexToNode(index).value()); } long sz = route.size(); // Helper Lambda. auto fromVertices = [&vertices](const std::vector &idxArray, std::vector &path){ for (size_t j=1; j pathIdx; shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx); fromVertices(pathIdx, _arrivalPath); if (_arrivalPath.size() < 2) return false; // Fill waypoints. _waypoints.push_back(vertices[route[1]]); for (long i=1; itiles().size() != _progress->size()){ ostringstream strstream; strstream << "Number of tiles (" << _scenario->tiles().size() << ") is not equal to progress array length (" << _progress->size() << ")"; errorString = strstream.str(); return false; } // Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area. size_t num_tiles = _progress->size(); vector processedTiles; { const auto &tiles = _scenario->tiles(); for (size_t i=0; imeasurementArea().outer() ){ mAreaClipper.push_back(ClipperLib::IntPoint{static_cast(vertex.get<0>()*CLIPPER_SCALE), static_cast(vertex.get<1>()*CLIPPER_SCALE)}); } vector processedTilesClipper; for (auto t : processedTiles){ ClipperLib::Path path; for (auto vertex : t.outer()){ path.push_back(ClipperLib::IntPoint{static_cast(vertex.get<0>()*CLIPPER_SCALE), static_cast(vertex.get<1>()*CLIPPER_SCALE)}); } processedTilesClipper.push_back(path); } const min_bbox_rt &bbox = _scenario->mAreaBoundingBox(); double alpha = bbox.angle; double x0 = bbox.corners.outer()[0].get<0>(); double y0 = bbox.corners.outer()[0].get<1>(); double bboxWidth = bbox.width; double bboxHeight = bbox.height; double delta = detail::offsetConstant; size_t num_t = int(ceil((bboxHeight + 2*delta)/_lineDistance)); // number of transects vector yCoords; yCoords.reserve(num_t); double y = -delta; for (size_t i=0; i < num_t; ++i) { yCoords.push_back(y); y += _lineDistance; } // Generate transects and convert them to clipper path. trans::rotate_transformer rotate_back(-alpha*180/M_PI); trans::translate_transformer translate_back(x0, y0); vector transectsClipper; transectsClipper.reserve(num_t); for (size_t i=0; i < num_t; ++i) { // calculate transect BoostPoint v1{-delta, yCoords[i]}; BoostPoint v2{bboxWidth+delta, yCoords[i]}; BoostLineString transect; transect.push_back(v1); transect.push_back(v2); // transform back BoostLineString temp_transect; bg::transform(transect, temp_transect, rotate_back); transect.clear(); bg::transform(temp_transect, transect, translate_back); ClipperLib::IntPoint c1{static_cast(transect[0].get<0>()*CLIPPER_SCALE), static_cast(transect[0].get<1>()*CLIPPER_SCALE)}; ClipperLib::IntPoint c2{static_cast(transect[1].get<0>()*CLIPPER_SCALE), static_cast(transect[1].get<1>()*CLIPPER_SCALE)}; ClipperLib::Path path{c1, c2}; transectsClipper.push_back(path); } // Perform clipping. // Clip transects to measurement area. ClipperLib::Clipper clipper; clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true); clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false); ClipperLib::PolyTree clippedTransecsPolyTree1; clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero); // Subtract holes (tiles with measurement_progress == 100) from transects. clipper.Clear(); for (auto child : clippedTransecsPolyTree1.Childs) clipper.AddPath(child->Contour, ClipperLib::ptSubject, false); clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true); ClipperLib::PolyTree clippedTransecsPolyTree2; clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero); // Extract transects from PolyTree and convert them to BoostLineString for (auto child : clippedTransecsPolyTree2.Childs){ ClipperLib::Path clipperTransect = child->Contour; BoostPoint v1{static_cast(clipperTransect[0].X)/CLIPPER_SCALE, static_cast(clipperTransect[0].Y)/CLIPPER_SCALE}; BoostPoint v2{static_cast(clipperTransect[1].X)/CLIPPER_SCALE, static_cast(clipperTransect[1].Y)/CLIPPER_SCALE}; BoostLineString transect{v1, v2}; if (bg::length(transect) >= _minTransectLength) _transects.push_back(transect); } if (_transects.size() < 1) return false; return true; } void Flightplan::_generateRoutingModel(const BoostLineString &vertices, const BoostPolygon &polygonOffset, size_t n0, Flightplan::RoutingDataModel &dataModel, Matrix &graph) { #ifdef SHOW_TIME auto start = std::chrono::high_resolution_clock::now(); #endif graphFromPolygon(polygonOffset, vertices, graph); #ifdef SHOW_TIME auto delta = std::chrono::duration_cast(std::chrono::high_resolution_clock::now()-start); cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl; #endif // cout << endl; // for (size_t i=0; i &row = graph[i]; // for (size_t j=0; j distanceMatrix(graph); #ifdef SHOW_TIME start = std::chrono::high_resolution_clock::now(); #endif toDistanceMatrix(distanceMatrix); #ifdef SHOW_TIME delta = std::chrono::duration_cast(std::chrono::high_resolution_clock::now()-start); cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl; #endif dataModel.distanceMatrix.setDimension(n0, n0); for (size_t i=0; i