// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // MIP example that uses a variable array. // [START program] package com.google.ortools.examples; // [START import] import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; // [END import] // [START program_part1] /** MIP example with a variable array. */ public class MipVarArray { static { System.loadLibrary("jniortools"); } // [START data_model] static class DataModel { public final double[][] constraintCoeffs = { {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; public final double[] bounds = {250, 285, 211, 315}; public final double[] objCoeffs = {7, 8, 2, 9, 6}; public final int numVars = 5; public final int numConstraints = 4; } // [END data_model] public static void main(String[] args) throws Exception { // [START data] final DataModel data = new DataModel(); // [END data] // [END program_part1] // [START solver] // Create the linear solver with the CBC backend. MPSolver solver = MPSolver.createSolver("MipVarArray", "CBC"); // [END solver] // [START program_part2] // [START variables] double infinity = java.lang.Double.POSITIVE_INFINITY; MPVariable[] x = new MPVariable[data.numVars]; for (int j = 0; j < data.numVars; ++j) { x[j] = solver.makeIntVar(0.0, infinity, ""); } System.out.println("Number of variables = " + solver.numVariables()); // [END variables] // [START constraints] // Create the constraints. for (int i = 0; i < data.numConstraints; ++i) { MPConstraint constraint = solver.makeConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.numVars; ++j) { constraint.setCoefficient(x[j], data.constraintCoeffs[i][j]); } } System.out.println("Number of constraints = " + solver.numConstraints()); // [END constraints] // [START objective] MPObjective objective = solver.objective(); for (int j = 0; j < data.numVars; ++j) { objective.setCoefficient(x[j], data.objCoeffs[j]); } objective.setMaximization(); // [END objective] // [START solve] final MPSolver.ResultStatus resultStatus = solver.solve(); // [END solve] // [START print_solution] // Check that the problem has an optimal solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Objective value = " + objective.value()); for (int j = 0; j < data.numVars; ++j) { System.out.println("x[" + j + "] = " + x[j].solutionValue()); } System.out.println(); System.out.println("Problem solved in " + solver.wallTime() + " milliseconds"); System.out.println("Problem solved in " + solver.iterations() + " iterations"); System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes"); } else { System.err.println("The problem does not have an optimal solution."); } // [END print_solution] } private MipVarArray() {} } // [END program_part2] // [END program]