/**************************************************************************** * * (c) 2009-2016 QGROUNDCONTROL PROJECT * * QGroundControl is licensed according to the terms in the file * COPYING.md in the root of the source code directory. * ****************************************************************************/ #include #include #include #include "QGCGeo.h" #include "UTM.h" // These defines are private #define M_DEG_TO_RAD (M_PI / 180.0) #define M_RAD_TO_DEG (180.0 / M_PI) #define CONSTANTS_ONE_G 9.80665f /* m/s^2 */ #define CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C 1.225f /* kg/m^3 */ #define CONSTANTS_AIR_GAS_CONST 287.1f /* J/(kg * K) */ #define CONSTANTS_ABSOLUTE_NULL_CELSIUS -273.15f /* °C */ #define CONSTANTS_RADIUS_OF_EARTH 6371000 /* meters (m) */ static const float epsilon = std::numeric_limits::epsilon(); void convertGeoToNed(QGeoCoordinate coord, QGeoCoordinate origin, double* x, double* y, double* z) { if (coord == origin) { // Short circuit to prevent NaNs in calculation *x = *y = *z = 0; return; } double lat_rad = coord.latitude() * M_DEG_TO_RAD; double lon_rad = coord.longitude() * M_DEG_TO_RAD; double ref_lon_rad = origin.longitude() * M_DEG_TO_RAD; double ref_lat_rad = origin.latitude() * M_DEG_TO_RAD; double sin_lat = sin(lat_rad); double cos_lat = cos(lat_rad); double cos_d_lon = cos(lon_rad - ref_lon_rad); double ref_sin_lat = sin(ref_lat_rad); double ref_cos_lat = cos(ref_lat_rad); double c = acos(ref_sin_lat * sin_lat + ref_cos_lat * cos_lat * cos_d_lon); double k = (fabs(c) < epsilon) ? 1.0 : (c / sin(c)); *x = k * (ref_cos_lat * sin_lat - ref_sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH; *y = k * cos_lat * sin(lon_rad - ref_lon_rad) * CONSTANTS_RADIUS_OF_EARTH; *z = -(coord.altitude() - origin.altitude()); } void convertNedToGeo(double x, double y, double z, QGeoCoordinate origin, QGeoCoordinate *coord) { double x_rad = x / CONSTANTS_RADIUS_OF_EARTH; double y_rad = y / CONSTANTS_RADIUS_OF_EARTH; double c = sqrtf(x_rad * x_rad + y_rad * y_rad); double sin_c = sin(c); double cos_c = cos(c); double ref_lon_rad = origin.longitude() * M_DEG_TO_RAD; double ref_lat_rad = origin.latitude() * M_DEG_TO_RAD; double ref_sin_lat = sin(ref_lat_rad); double ref_cos_lat = cos(ref_lat_rad); double lat_rad; double lon_rad; if (fabs(c) > epsilon) { lat_rad = asin(cos_c * ref_sin_lat + (x_rad * sin_c * ref_cos_lat) / c); lon_rad = (ref_lon_rad + atan2(y_rad * sin_c, c * ref_cos_lat * cos_c - x_rad * ref_sin_lat * sin_c)); } else { lat_rad = ref_lat_rad; lon_rad = ref_lon_rad; } coord->setLatitude(lat_rad * M_RAD_TO_DEG); coord->setLongitude(lon_rad * M_RAD_TO_DEG); coord->setAltitude(-z + origin.altitude()); } int convertGeoToUTM(const QGeoCoordinate& coord, double& easting, double& northing) { return LatLonToUTMXY(coord.latitude(), coord.longitude(), -1 /* zone */, easting, northing); } void convertUTMToGeo(double easting, double northing, int zone, bool southhemi, QGeoCoordinate& coord) { double latRadians, lonRadians; UTMXYToLatLon (easting, northing, zone, southhemi, latRadians, lonRadians); coord.setLatitude(RadToDeg(latRadians)); coord.setLongitude(RadToDeg(lonRadians)); }