// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #ifndef EIGEN_LLT_H #define EIGEN_LLT_H namespace internal{ template<typename MatrixType, int UpLo> struct LLT_Traits; } /** \ingroup cholesky_Module * * \class LLT * * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features * * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition * * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite * matrix A such that A = LL^* = U^*U, where L is lower triangular. * * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, * for that purpose, we recommend the Cholesky decomposition without square root which is more stable * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other * situations like generalised eigen problems with hermitian matrices. * * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations * has a solution. * * \sa MatrixBase::llt(), class LDLT */ /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, * the strict lower part does not have to store correct values. */ template<typename _MatrixType, int _UpLo> class LLT { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; enum { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize)-1, UpLo = _UpLo }; typedef internal::LLT_Traits<MatrixType,UpLo> Traits; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LLT::compute(const MatrixType&). */ LLT() : m_matrix(), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa LLT() */ LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {} LLT(const MatrixType& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) { compute(matrix); } /** \returns a view of the upper triangular matrix U */ inline typename Traits::MatrixU matrixU() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getU(m_matrix); } /** \returns a view of the lower triangular matrix L */ inline typename Traits::MatrixL matrixL() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getL(m_matrix); } /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. * * Since this LLT class assumes anyway that the matrix A is invertible, the solution * theoretically exists and is unique regardless of b. * * Example: \include LLT_solve.cpp * Output: \verbinclude LLT_solve.out * * \sa solveInPlace(), MatrixBase::llt() */ template<typename Rhs> inline const internal::solve_retval<LLT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval<LLT, Rhs>(*this, b.derived()); } #ifdef EIGEN2_SUPPORT template<typename OtherDerived, typename ResultType> bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const { *result = this->solve(b); return true; } bool isPositiveDefinite() const { return true; } #endif template<typename Derived> void solveInPlace(MatrixBase<Derived> &bAndX) const; LLT& compute(const MatrixType& matrix); /** \returns the LLT decomposition matrix * * TODO: document the storage layout */ inline const MatrixType& matrixLLT() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_matrix; } MatrixType reconstructedMatrix() const; /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_info; } inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } protected: /** \internal * Used to compute and store L * The strict upper part is not used and even not initialized. */ MatrixType m_matrix; bool m_isInitialized; ComputationInfo m_info; }; namespace internal { template<int UpLo> struct llt_inplace; template<> struct llt_inplace<Lower> { template<typename MatrixType> static typename MatrixType::Index unblocked(MatrixType& mat) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); for(Index k = 0; k < size; ++k) { Index rs = size-k-1; // remaining size Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); RealScalar x = real(mat.coeff(k,k)); if (k>0) x -= A10.squaredNorm(); if (x<=RealScalar(0)) return k; mat.coeffRef(k,k) = x = sqrt(x); if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); if (rs>0) A21 *= RealScalar(1)/x; } return -1; } template<typename MatrixType> static typename MatrixType::Index blocked(MatrixType& m) { typedef typename MatrixType::Index Index; eigen_assert(m.rows()==m.cols()); Index size = m.rows(); if(size<32) return unblocked(m); Index blockSize = size/8; blockSize = (blockSize/16)*16; blockSize = std::min(std::max(blockSize,Index(8)), Index(128)); for (Index k=0; k<size; k+=blockSize) { // partition the matrix: // A00 | - | - // lu = A10 | A11 | - // A20 | A21 | A22 Index bs = std::min(blockSize, size-k); Index rs = size - k - bs; Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); Index ret; if((ret=unblocked(A11))>=0) return k+ret; if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck } return -1; } }; template<> struct llt_inplace<Upper> { template<typename MatrixType> static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) { Transpose<MatrixType> matt(mat); return llt_inplace<Lower>::unblocked(matt); } template<typename MatrixType> static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) { Transpose<MatrixType> matt(mat); return llt_inplace<Lower>::blocked(matt); } }; template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> { typedef TriangularView<MatrixType, Lower> MatrixL; typedef TriangularView<typename MatrixType::AdjointReturnType, Upper> MatrixU; inline static MatrixL getL(const MatrixType& m) { return m; } inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace<Lower>::blocked(m)==-1; } }; template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> { typedef TriangularView<typename MatrixType::AdjointReturnType, Lower> MatrixL; typedef TriangularView<MatrixType, Upper> MatrixU; inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); } inline static MatrixU getU(const MatrixType& m) { return m; } static bool inplace_decomposition(MatrixType& m) { return llt_inplace<Upper>::blocked(m)==-1; } }; } // end namespace internal /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix * * * \returns a reference to *this */ template<typename MatrixType, int _UpLo> LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) { assert(a.rows()==a.cols()); const Index size = a.rows(); m_matrix.resize(size, size); m_matrix = a; m_isInitialized = true; bool ok = Traits::inplace_decomposition(m_matrix); m_info = ok ? Success : NumericalIssue; return *this; } namespace internal { template<typename _MatrixType, int UpLo, typename Rhs> struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> { typedef LLT<_MatrixType,UpLo> LLTType; EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dst = rhs(); dec().solveInPlace(dst); } }; } /** \internal use x = llt_object.solve(x); * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. * * This version avoids a copy when the right hand side matrix b is not * needed anymore. * * \sa LLT::solve(), MatrixBase::llt() */ template<typename MatrixType, int _UpLo> template<typename Derived> void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows()==bAndX.rows()); matrixL().solveInPlace(bAndX); matrixU().solveInPlace(bAndX); } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: L L^*. * This function is provided for debug purpose. */ template<typename MatrixType, int _UpLo> MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return matrixL() * matrixL().adjoint().toDenseMatrix(); } /** \cholesky_module * \returns the LLT decomposition of \c *this */ template<typename Derived> inline const LLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::llt() const { return LLT<PlainObject>(derived()); } /** \cholesky_module * \returns the LLT decomposition of \c *this */ template<typename MatrixType, unsigned int UpLo> inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::llt() const { return LLT<PlainObject,UpLo>(m_matrix); } #endif // EIGEN_LLT_H