
Documentation of the QGroundControl WiMA-Extension

Valentin Platzgummer

September 14, 2019

1 Introduction

WiMA is a abbreviation for Wireless Measurement Application.
This document was created to explain the functionality of the WiMA-Extension at one hand

and to encourage the reader to find bugs inside the program. Hence the document is split in two
parts. The first part contains instructions on how to use WiMA and the second part gives some
suggestions for testing. As the extension is still being developed the contents demonstrated inside
this document may differ from those ones in the program.

The folder ”deploy” in the QGroundControl root directory (can be cloned from Gitlab) contains
a AppImage of the program. QGroundControl can be launched by double-clicking the AppImage.
Currently only a Linux version is available.

2 Documentation

2.1 Structure of QGroundControl with WiMA-Extension

Figure 1 shows a detail view of the QGC main window. Relevant for this documentation are
the flight view, the plan view and the WiMA main window. Their function will now be briefly
summarized.

The plan view window is used to create flight plans. They can be stored as .plan files or
directly be uploaded to a vehicle (either a real one or a simulated one). Flight plans consist of
waypoints. Each waypoint stores, among others, a coordinate (latitude, longitude, altitude) and
a command (take off, land, wait for x seconds, etc.). To define a sensible flight plan a sequence
of waypoints should begin with a take off command and end with a land command. Besides
waypoints more complex patterns can be defined, which is done by inserting a Survey, a Circular
Survey, a Structure Scan or a Corridor Scan. Just try them out! Using the simulator can be very
helpful.

The flight view window comes in necessary as soon as you want a vehicle to get in action.
Once the vehicle established a connection (serial, TCP, UDP, etc.) QGroundControl starts to
communicate automatically with it automatically in most cases. If not, check the settings menu
of QGroundControl. A red arrow will appear on the map showing the vehicles position and
orientation. On the top indicator strip telemetry data will be published. At the left edge a tool
strip will be activated, which can be used to command the vehicle.

The WiMA main window is used to automatically generate flight paths on the base of
minimal user input. The user can define a Measurement Area, a Service Area (for take off, land,
supply tasks, etc.) and a Corridor, which connects the previous two areas. Below the WiMA main
window will be described in more detail.

1



Figure 1: Detail view of the QGC window, which appears after start-up. Marked in red is the
button for switching to the plan view window, green indicates the flight view button (current
window) and marked in magenta is the button for switching to the WiMA main window.

2.2 WiMA Main Window

2.2.1 WiMA Tool Strip

By clicking the wave symbol (see fig. 1; magenta square) the WiMA main window appears. After
entering, at the left edge, the WiMA tool strip will appear (depicted in fig. 2).

Figure 2: WiMA Toolstrip
inside WiMA Main Window.

Pressing the File button opens a menu which offers saving and
loading operations. At one hand all WiMA areas and mission items
can be saved using the .wima file extension, at the other hand the
mission items only can be stored using the .plan file extension.
The Open button can be used to load previously stored files. Press-
ing the New button deletes all contents within the WiMA Main
Window. Additionally with the Upload, Download and Clear Vehi-
cle Mission button the mission items (if present) can be uploaded,
downloaded or be deleted from the vehicle respectively.

The Measure, Service and Corridor buttons are used to
insert a measurement, service and corridor area, respectively. At
the time only one of each areas can be inserted. To automatically
generate a flight plan at least a measurement and a service area
must be defined. Both must be overlapping.

To auto generate a flight plan the Calculate button must be
pressed. Further information about how to display the generated
flight plan will follow below. In the future this button might be
removed and be replaced by a routine which automatically triggers
recalculation after any modification. However as the flight plan
generation can be time consuming on older devices, this button
will remain in the near future, up to the point, underlying routines
get optimized.

As flight generation is manually triggered the flight plans might
look wrong (for e.g. after user modification), pressing the Calcu-
late button often will remove errors. If not, please report any

2



bugs.
The last three buttons, Center, In and Out are used to center the view and for zooming

respectively.

2.2.2 WiMA Areas

As all ready mention the three areas, namely the Measurement Area, the Service Area and the
Corridor can be defined using the corresponding buttons of the WiMA Tool Strip (see 2.2.1).

Figure 3: WiMA Item Edi-
tor at the right edge of the
WiMA Main Window.

Figure 4: Flight path of a real
world vehicle (the red line).

The WiMA Measurement Area defines, as the name indicates, the area of interest within
which any measurements should be performed. The area will be displayed as a green shaded
rectangle surrounded by a white line, after pressing the Measure button. The area will be listed at
the right side within the WiMA Item Editor, after creation (see fig. 3). The WiMA Item Editor
can be used to modify area parameters.

The Offset parameter (see fig. 3) changes the distance between the measurement area and its

Figure 5: Adjust the vertex
by dragging it’s handle.

Figure 6: Add vertices by hit-
ting the plus sign.

Figure 7: Move any area by
dragging its drag handle.

3



Figure 8: A valid configuration of Measurement, Service Area and Corridor.

surrounding polygon. The surrounding polygon is a helper to provide sufficient clearance between
the measurement area and surrounding obstacles like trees or buildings.

All other parameters shown in fig. 3 don’t yet have any impact (intended for future use).
The WiMA Service Area is meant to be the area were takeoff and landing happens as well

as battery exchange or (hopefully no) repair work is done, hence the name.
The WiMA Corridor connects the two previous areas and defines a corridor which the

vehicles uses to travel between Service and Measurement Area.
The flight plan will be generated such that all waypoints are within or at least at the edge of

the above mentioned areas. However it should be taken in account, that the vehicle could still
leave the save area, even under fully functional operation. Depending on software implementation
of the vehicles flight stack (firmware) the flight controller could decide to perform any kind of path
optimization. Additionally drifts caused by wind gusts could happen. An example can be seen in
fig. 4. The vehicles flight controller indeed has no information about any WiMA Areas, they exist
exclusively within the QGroundControl application.

All WiMA areas can be shaped by dragging the vertex handles (see fig. 5). New vertices can
be created by hitting the plus signs at the edges (see fig. 6). The whole area can be moved by
dragging its drag handle (see fig. 7).

A valid configuration including Measurement, Service Area and Corridor could look like shown
in fig.

2.2.3 The generated Flight Path

2.2.4 Circular Survey

4



2.3 ArduPilot Simulator

For tasks like debugging, program verification or flight plan testing a simulated vehicle can be
very useful. It can save time, money and prevent you from any excessive sunburns, if you forgot
that you are actually outside, starring on your screen, exposed to the hot summer sun.

For this task the ArduPilot simulator can be used. It simulates a vehicle runnig the ArduPilot
flight stack (firmware) on your local machine. Data is beeing published by the simulator via UDP
and should ideally connect to QGroundControl without any further tweaks.

The simulator is part of the ArduPilot project, which can be downloaded from Github: https:
//github.com/ArduPilot/ardupilot. It is recommanded to fork the repository. After cloning
the repository, the submodules must be initialized and updated. Execute the following code to do
this.

git clone https://github.com/ArduPilot/ardupilot

cd ardupilot

git submodule init

git submodule update

The simulator is launched by a Python script, thus Python must be installed on your machine.
The simulator is now ready to run, it can be launched from your ArduPilot root directory with
the following command.

./Tools/autotest/sim_vehicle.py -v ArduCopter

Thereby the -v option specifies the vehicle type. The -l option can be used to define a custom
start location. See the sim_vehicle.py --help option for further information. After launching,
the vehicle should appear inside QGC.

5


