// UTM.c // Original Javascript by Chuck Taylor // Port to C++ by Alex Hajnal // // *** THIS CODE USES 32-BIT FLOATS BY DEFAULT *** // *** For 64-bit double-precision edit UTM.h: undefine FLOAT_32 and define FLOAT_64 // // This is a simple port of the code on the Geographic/UTM Coordinate Converter (1) page from Javascript to C++. // Using this you can easily convert between UTM and WGS84 (latitude and longitude). // Accuracy seems to be around 50cm (I suspect rounding errors are limiting precision). // This code is provided as-is and has been minimally tested; enjoy but use at your own risk! // The license for UTM.cpp and UTM.h is the same as the original Javascript: // "The C++ source code in UTM.cpp and UTM.h may be copied and reused without restriction." // // 1) http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html #include "UTM.h" // DegToRad // Converts degrees to radians. FLOAT DegToRad(FLOAT deg) { return (deg / 180.0 * pi); } // RadToDeg // Converts radians to degrees. FLOAT RadToDeg(FLOAT rad) { return (rad / pi * 180.0); } // ArcLengthOfMeridian // Computes the ellipsoidal distance from the equator to a point at a // given latitude. // // Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., // GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. // // Inputs: // phi - Latitude of the point, in radians. // // Globals: // sm_a - Ellipsoid model major axis. // sm_b - Ellipsoid model minor axis. // // Returns: // The ellipsoidal distance of the point from the equator, in meters. FLOAT ArcLengthOfMeridian (FLOAT phi) { FLOAT alpha, beta, gamma, delta, epsilon, n; FLOAT result; /* Precalculate n */ n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha */ alpha = ((sm_a + sm_b) / 2.0) * (1.0 + (POW(n, 2.0) / 4.0) + (POW(n, 4.0) / 64.0)); /* Precalculate beta */ beta = (-3.0 * n / 2.0) + (9.0 * POW(n, 3.0) / 16.0) + (-3.0 * POW(n, 5.0) / 32.0); /* Precalculate gamma */ gamma = (15.0 * POW(n, 2.0) / 16.0) + (-15.0 * POW(n, 4.0) / 32.0); /* Precalculate delta */ delta = (-35.0 * POW(n, 3.0) / 48.0) + (105.0 * POW(n, 5.0) / 256.0); /* Precalculate epsilon */ epsilon = (315.0 * POW(n, 4.0) / 512.0); /* Now calculate the sum of the series and return */ result = alpha * (phi + (beta * SIN(2.0 * phi)) + (gamma * SIN(4.0 * phi)) + (delta * SIN(6.0 * phi)) + (epsilon * SIN(8.0 * phi))); return result; } // UTMCentralMeridian // Determines the central meridian for the given UTM zone. // // Inputs: // zone - An integer value designating the UTM zone, range [1,60]. // // Returns: // The central meridian for the given UTM zone, in radians // Range of the central meridian is the radian equivalent of [-177,+177]. FLOAT UTMCentralMeridian(int zone) { FLOAT cmeridian; cmeridian = DegToRad(-183.0 + ((FLOAT)zone * 6.0)); return cmeridian; } // FootpointLatitude // // Computes the footpoint latitude for use in converting transverse // Mercator coordinates to ellipsoidal coordinates. // // Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., // GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. // // Inputs: // y - The UTM northing coordinate, in meters. // // Returns: // The footpoint latitude, in radians. FLOAT FootpointLatitude(FLOAT y) { FLOAT y_, alpha_, beta_, gamma_, delta_, epsilon_, n; FLOAT result; /* Precalculate n (Eq. 10.18) */ n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha_ (Eq. 10.22) */ /* (Same as alpha in Eq. 10.17) */ alpha_ = ((sm_a + sm_b) / 2.0) * (1 + (POW(n, 2.0) / 4) + (POW(n, 4.0) / 64)); /* Precalculate y_ (Eq. 10.23) */ y_ = y / alpha_; /* Precalculate beta_ (Eq. 10.22) */ beta_ = (3.0 * n / 2.0) + (-27.0 * POW(n, 3.0) / 32.0) + (269.0 * POW(n, 5.0) / 512.0); /* Precalculate gamma_ (Eq. 10.22) */ gamma_ = (21.0 * POW(n, 2.0) / 16.0) + (-55.0 * POW(n, 4.0) / 32.0); /* Precalculate delta_ (Eq. 10.22) */ delta_ = (151.0 * POW(n, 3.0) / 96.0) + (-417.0 * POW(n, 5.0) / 128.0); /* Precalculate epsilon_ (Eq. 10.22) */ epsilon_ = (1097.0 * POW(n, 4.0) / 512.0); /* Now calculate the sum of the series (Eq. 10.21) */ result = y_ + (beta_ * SIN(2.0 * y_)) + (gamma_ * SIN(4.0 * y_)) + (delta_ * SIN(6.0 * y_)) + (epsilon_ * SIN(8.0 * y_)); return result; } // MapLatLonToXY // Converts a latitude/longitude pair to x and y coordinates in the // Transverse Mercator projection. Note that Transverse Mercator is not // the same as UTM; a scale factor is required to convert between them. // // Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., // GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. // // Inputs: // phi - Latitude of the point, in radians. // lambda - Longitude of the point, in radians. // lambda0 - Longitude of the central meridian to be used, in radians. // // Outputs: // x - The x coordinate of the computed point. // y - The y coordinate of the computed point. // // Returns: // The function does not return a value. void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y) { FLOAT N, nu2, ep2, t, t2, l; FLOAT l3coef, l4coef, l5coef, l6coef, l7coef, l8coef; //FLOAT tmp; // Unused /* Precalculate ep2 */ ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0)) / POW(sm_b, 2.0); /* Precalculate nu2 */ nu2 = ep2 * POW(COS(phi), 2.0); /* Precalculate N */ N = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nu2)); /* Precalculate t */ t = TAN(phi); t2 = t * t; //tmp = (t2 * t2 * t2) - POW(t, 6.0); // Unused /* Precalculate l */ l = lambda - lambda0; /* Precalculate coefficients for l**n in the equations below so a normal human being can read the expressions for easting and northing -- l**1 and l**2 have coefficients of 1.0 */ l3coef = 1.0 - t2 + nu2; l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2); l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2; l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 - 330.0 * t2 * nu2; l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2); /* Calculate easting (x) */ x = N * COS(phi) * l + (N / 6.0 * POW(COS(phi), 3.0) * l3coef * POW(l, 3.0)) + (N / 120.0 * POW(COS(phi), 5.0) * l5coef * POW(l, 5.0)) + (N / 5040.0 * POW(COS(phi), 7.0) * l7coef * POW(l, 7.0)); /* Calculate northing (y) */ y = ArcLengthOfMeridian (phi) + (t / 2.0 * N * POW(COS(phi), 2.0) * POW(l, 2.0)) + (t / 24.0 * N * POW(COS(phi), 4.0) * l4coef * POW(l, 4.0)) + (t / 720.0 * N * POW(COS(phi), 6.0) * l6coef * POW(l, 6.0)) + (t / 40320.0 * N * POW(COS(phi), 8.0) * l8coef * POW(l, 8.0)); return; } // MapXYToLatLon // Converts x and y coordinates in the Transverse Mercator projection to // a latitude/longitude pair. Note that Transverse Mercator is not // the same as UTM; a scale factor is required to convert between them. // // Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., // GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. // // Inputs: // x - The easting of the point, in meters. // y - The northing of the point, in meters. // lambda0 - Longitude of the central meridian to be used, in radians. // // Outputs: // phi - Latitude in radians. // lambda - Longitude in radians. // // Returns: // The function does not return a value. // // Remarks: // The local variables Nf, nuf2, tf, and tf2 serve the same purpose as // N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect // to the footpoint latitude phif. // // x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and // to optimize computations. void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda) { FLOAT phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf; FLOAT x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac; FLOAT x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly; /* Get the value of phif, the footpoint latitude. */ phif = FootpointLatitude (y); /* Precalculate ep2 */ ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0)) / POW(sm_b, 2.0); /* Precalculate cos (phif) */ cf = COS(phif); /* Precalculate nuf2 */ nuf2 = ep2 * POW(cf, 2.0); /* Precalculate Nf and initialize Nfpow */ Nf = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nuf2)); Nfpow = Nf; /* Precalculate tf */ tf = TAN(phif); tf2 = tf * tf; tf4 = tf2 * tf2; /* Precalculate fractional coefficients for x**n in the equations below to simplify the expressions for latitude and longitude. */ x1frac = 1.0 / (Nfpow * cf); Nfpow *= Nf; /* now equals Nf**2) */ x2frac = tf / (2.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**3) */ x3frac = 1.0 / (6.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**4) */ x4frac = tf / (24.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**5) */ x5frac = 1.0 / (120.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**6) */ x6frac = tf / (720.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**7) */ x7frac = 1.0 / (5040.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**8) */ x8frac = tf / (40320.0 * Nfpow); /* Precalculate polynomial coefficients for x**n. -- x**1 does not have a polynomial coefficient. */ x2poly = -1.0 - nuf2; x3poly = -1.0 - 2 * tf2 - nuf2; x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 - 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2); x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2; x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2 + 162.0 * tf2 * nuf2; x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2); x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2); /* Calculate latitude */ phi = phif + x2frac * x2poly * (x * x) + x4frac * x4poly * POW(x, 4.0) + x6frac * x6poly * POW(x, 6.0) + x8frac * x8poly * POW(x, 8.0); /* Calculate longitude */ lambda = lambda0 + x1frac * x + x3frac * x3poly * POW(x, 3.0) + x5frac * x5poly * POW(x, 5.0) + x7frac * x7poly * POW(x, 7.0); return; } // LatLonToUTMXY // Converts a latitude/longitude pair to x and y coordinates in the // Universal Transverse Mercator projection. // // Inputs: // lat - Latitude of the point, in radians. // lon - Longitude of the point, in radians. // zone - UTM zone to be used for calculating values for x and y. // If zone is less than 1 or greater than 60, the routine // will determine the appropriate zone from the value of lon. // // Outputs: // x - The x coordinate (easting) of the computed point. (in meters) // y - The y coordinate (northing) of the computed point. (in meters) // // Returns: // The UTM zone used for calculating the values of x and y. int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y) { if ( (zone < 1) || (zone > 60) ) zone = FLOOR((lon + 180.0) / 6) + 1; MapLatLonToXY (DegToRad(lat), DegToRad(lon), UTMCentralMeridian(zone), x, y); /* Adjust easting and northing for UTM system. */ x = x * UTMScaleFactor + 500000.0; y = y * UTMScaleFactor; if (y < 0.0) y = y + 10000000.0; return zone; } // UTMXYToLatLon // // Converts x and y coordinates in the Universal Transverse Mercator // projection to a latitude/longitude pair. // // Inputs: // x - The easting of the point, in meters. // y - The northing of the point, in meters. // zone - The UTM zone in which the point lies. // southhemi - True if the point is in the southern hemisphere; // false otherwise. // // Outputs: // lat - The latitude of the point, in radians. // lon - The longitude of the point, in radians. // // Returns: // The function does not return a value. void UTMXYToLatLon (FLOAT x, FLOAT y, int zone, bool southhemi, FLOAT& lat, FLOAT& lon) { FLOAT cmeridian; x -= 500000.0; x /= UTMScaleFactor; /* If in southern hemisphere, adjust y accordingly. */ if (southhemi) y -= 10000000.0; y /= UTMScaleFactor; cmeridian = UTMCentralMeridian (zone); MapXYToLatLon (x, y, cmeridian, lat, lon); return; }