#include "CircularSurvey.h" #include "RoutingThread.h" // QGC #include "JsonHelper.h" #include "QGCApplication.h" // Wima #include "snake.h" #define CLIPPER_SCALE 10000 #include "clipper/clipper.hpp" template ClipperLib::cInt get(ClipperLib::IntPoint &p); template <> ClipperLib::cInt get<0>(ClipperLib::IntPoint &p) { return p.X; } template <> ClipperLib::cInt get<1>(ClipperLib::IntPoint &p) { return p.Y; } #include "Geometry/GenericCircle.h" // boost #include #include template class CommandRAII { public: CommandRAII(Functor f) : fun(f) {} ~CommandRAII() { fun(); } private: Functor fun; }; template constexpr typename std::underlying_type::type integral(T value) { return static_cast::type>(value); } bool circularTransects(const QGeoCoordinate &ref, const QGeoCoordinate &depot, bool useDepot, const QList &polygon, snake::Length deltaR, snake::Angle deltaAlpha, snake::Length minLength, snake::Transects &transects); bool linearTransects(const QGeoCoordinate &origin, const QGeoCoordinate &depot, bool useDepot, const QList &polygon, snake::Length distance, snake::Angle angle, snake::Length minLength, snake::Transects &transects); const char *CircularSurvey::settingsGroup = "CircularSurvey"; const char *CircularSurvey::transectDistanceName = "TransectDistance"; const char *CircularSurvey::alphaName = "Alpha"; const char *CircularSurvey::minLengthName = "MinLength"; const char *CircularSurvey::typeName = "Type"; const char *CircularSurvey::CircularSurveyName = "CircularSurvey"; const char *CircularSurvey::refPointLatitudeName = "ReferencePointLat"; const char *CircularSurvey::refPointLongitudeName = "ReferencePointLong"; const char *CircularSurvey::refPointAltitudeName = "ReferencePointAlt"; CircularSurvey::CircularSurvey(Vehicle *vehicle, bool flyView, const QString &kmlOrShpFile, QObject *parent) : TransectStyleComplexItem(vehicle, flyView, settingsGroup, parent), _referencePoint(QGeoCoordinate(0, 0, 0)), _metaDataMap(FactMetaData::createMapFromJsonFile( QStringLiteral(":/json/CircularSurvey.SettingsGroup.json"), this)), _transectDistance(settingsGroup, _metaDataMap[transectDistanceName]), _alpha(settingsGroup, _metaDataMap[alphaName]), _minLength(settingsGroup, _metaDataMap[minLengthName]), _type(settingsGroup, _metaDataMap[typeName]), _pWorker(std::make_unique()), _needsStoring(false), _needsReversal(false), _hidePolygon(false) { Q_UNUSED(kmlOrShpFile) _editorQml = "qrc:/qml/CircularSurveyItemEditor.qml"; // Connect facts. connect(&_transectDistance, &Fact::valueChanged, this, &CircularSurvey::_rebuildTransects); connect(&_alpha, &Fact::valueChanged, this, &CircularSurvey::_rebuildTransects); connect(&_minLength, &Fact::valueChanged, this, &CircularSurvey::_rebuildTransects); connect(this, &CircularSurvey::refPointChanged, this, &CircularSurvey::_rebuildTransects); connect(this, &CircularSurvey::depotChanged, this, &CircularSurvey::_rebuildTransects); connect(this, &CircularSurvey::safeAreaChanged, this, &CircularSurvey::_rebuildTransects); connect(&this->_type, &Fact::rawValueChanged, this, &CircularSurvey::_rebuildTransects); // Connect worker. connect(this->_pWorker.get(), &RoutingThread::result, this, &CircularSurvey::_setTransects); connect(this->_pWorker.get(), &RoutingThread::calculatingChanged, this, &CircularSurvey::calculatingChanged); this->_transectsDirty = false; } CircularSurvey::~CircularSurvey() {} void CircularSurvey::resetReference() { setRefPoint(_surveyAreaPolygon.center()); } void CircularSurvey::reverse() { this->_needsReversal = true; this->_rebuildTransects(); } void CircularSurvey::setRefPoint(const QGeoCoordinate &refPt) { if (refPt != _referencePoint) { _referencePoint = refPt; _referencePoint.setAltitude(0); emit refPointChanged(); } } QGeoCoordinate CircularSurvey::refPoint() const { return _referencePoint; } Fact *CircularSurvey::transectDistance() { return &_transectDistance; } Fact *CircularSurvey::alpha() { return &_alpha; } bool CircularSurvey::hidePolygon() const { return _hidePolygon; } QGeoCoordinate CircularSurvey::depot() const { return this->_depot; } QList CircularSurvey::safeArea() const { return this->_safeArea; } const QList> &CircularSurvey::rawTransects() const { return this->_rawTransects; } void CircularSurvey::setHidePolygon(bool hide) { if (this->_hidePolygon != hide) { this->_hidePolygon = hide; emit hidePolygonChanged(); } } void CircularSurvey::setDepot(const QGeoCoordinate &depot) { if (this->_depot != depot) { this->_depot = depot; this->_depot.setAltitude(0); emit depotChanged(); } } void CircularSurvey::setSafeArea(const QList &safeArea) { if (this->_safeArea != safeArea) { this->_safeArea = safeArea; emit safeAreaChanged(); } } bool CircularSurvey::load(const QJsonObject &complexObject, int sequenceNumber, QString &errorString) { // We need to pull version first to determine what validation/conversion // needs to be performed QList versionKeyInfoList = { {JsonHelper::jsonVersionKey, QJsonValue::Double, true}, }; if (!JsonHelper::validateKeys(complexObject, versionKeyInfoList, errorString)) { return false; } int version = complexObject[JsonHelper::jsonVersionKey].toInt(); if (version != 1) { errorString = tr("Survey items do not support version %1").arg(version); return false; } QList keyInfoList = { {VisualMissionItem::jsonTypeKey, QJsonValue::String, true}, {ComplexMissionItem::jsonComplexItemTypeKey, QJsonValue::String, true}, {transectDistanceName, QJsonValue::Double, true}, {alphaName, QJsonValue::Double, true}, {minLengthName, QJsonValue::Double, true}, {typeName, QJsonValue::Double, true}, {refPointLatitudeName, QJsonValue::Double, true}, {refPointLongitudeName, QJsonValue::Double, true}, {refPointAltitudeName, QJsonValue::Double, true}, }; if (!JsonHelper::validateKeys(complexObject, keyInfoList, errorString)) { return false; } QString itemType = complexObject[VisualMissionItem::jsonTypeKey].toString(); QString complexType = complexObject[ComplexMissionItem::jsonComplexItemTypeKey].toString(); if (itemType != VisualMissionItem::jsonTypeComplexItemValue || complexType != CircularSurveyName) { errorString = tr("%1 does not support loading this complex mission item " "type: %2:%3") .arg(qgcApp()->applicationName()) .arg(itemType) .arg(complexType); return false; } _ignoreRecalc = true; setSequenceNumber(sequenceNumber); if (!_surveyAreaPolygon.loadFromJson(complexObject, true /* required */, errorString)) { _surveyAreaPolygon.clear(); return false; } if (!_load(complexObject, errorString)) { _ignoreRecalc = false; return false; } _transectDistance.setRawValue(complexObject[transectDistanceName].toDouble()); _alpha.setRawValue(complexObject[alphaName].toDouble()); _minLength.setRawValue(complexObject[minLengthName].toDouble()); _type.setRawValue(complexObject[typeName].toInt()); _referencePoint.setLongitude(complexObject[refPointLongitudeName].toDouble()); _referencePoint.setLatitude(complexObject[refPointLatitudeName].toDouble()); _referencePoint.setAltitude(complexObject[refPointAltitudeName].toDouble()); _ignoreRecalc = false; _recalcComplexDistance(); if (_cameraShots == 0) { // Shot count was possibly not available from plan file _recalcCameraShots(); } return true; } QString CircularSurvey::mapVisualQML() const { return QStringLiteral("CircularSurveyMapVisual.qml"); } void CircularSurvey::save(QJsonArray &planItems) { QJsonObject saveObject; _save(saveObject); saveObject[JsonHelper::jsonVersionKey] = 1; saveObject[VisualMissionItem::jsonTypeKey] = VisualMissionItem::jsonTypeComplexItemValue; saveObject[ComplexMissionItem::jsonComplexItemTypeKey] = CircularSurveyName; saveObject[transectDistanceName] = _transectDistance.rawValue().toDouble(); saveObject[alphaName] = _alpha.rawValue().toDouble(); saveObject[minLengthName] = _minLength.rawValue().toDouble(); saveObject[typeName] = double(_type.rawValue().toUInt()); saveObject[refPointLongitudeName] = _referencePoint.longitude(); saveObject[refPointLatitudeName] = _referencePoint.latitude(); saveObject[refPointAltitudeName] = _referencePoint.altitude(); // Polygon shape _surveyAreaPolygon.saveToJson(saveObject); planItems.append(saveObject); } bool CircularSurvey::specifiesCoordinate() const { return true; } void CircularSurvey::appendMissionItems(QList &items, QObject *missionItemParent) { if (_transectsDirty) return; if (_loadedMissionItems.count()) { // We have mission items from the loaded plan, use those _appendLoadedMissionItems(items, missionItemParent); } else { // Build the mission items on the fly _buildAndAppendMissionItems(items, missionItemParent); } } void CircularSurvey::_appendLoadedMissionItems(QList &items, QObject *missionItemParent) { if (_transectsDirty) return; int seqNum = _sequenceNumber; for (const MissionItem *loadedMissionItem : _loadedMissionItems) { MissionItem *item = new MissionItem(*loadedMissionItem, missionItemParent); item->setSequenceNumber(seqNum++); items.append(item); } } void CircularSurvey::_buildAndAppendMissionItems(QList &items, QObject *missionItemParent) { if (_transectsDirty || _transects.count() == 0) return; MissionItem *item; int seqNum = _sequenceNumber; MAV_FRAME mavFrame = followTerrain() || !_cameraCalc.distanceToSurfaceRelative() ? MAV_FRAME_GLOBAL : MAV_FRAME_GLOBAL_RELATIVE_ALT; for (const QList &transect : _transects) { // bool transectEntry = true; for (const CoordInfo_t &transectCoordInfo : transect) { item = new MissionItem( seqNum++, MAV_CMD_NAV_WAYPOINT, mavFrame, 0, // Hold time (delay for hover and capture to settle vehicle // before image is taken) 0.0, // No acceptance radius specified 0.0, // Pass through waypoint std::numeric_limits::quiet_NaN(), // Yaw unchanged transectCoordInfo.coord.latitude(), transectCoordInfo.coord.longitude(), transectCoordInfo.coord.altitude(), true, // autoContinue false, // isCurrentItem missionItemParent); items.append(item); } } } void CircularSurvey::applyNewAltitude(double newAltitude) { _cameraCalc.valueSetIsDistance()->setRawValue(true); _cameraCalc.distanceToSurface()->setRawValue(newAltitude); _cameraCalc.setDistanceToSurfaceRelative(true); } double CircularSurvey::timeBetweenShots() { return 1; } QString CircularSurvey::commandDescription() const { return tr("Circular Survey"); } QString CircularSurvey::commandName() const { return tr("Circular Survey"); } QString CircularSurvey::abbreviation() const { return tr("C.S."); } bool CircularSurvey::readyForSave() const { return TransectStyleComplexItem::readyForSave() && !_transectsDirty; } double CircularSurvey::additionalTimeDelay() const { return 0; } void CircularSurvey::_rebuildTransectsPhase1(void) { // Store result of former calculation. if (this->_needsStoring) { #ifdef SHOW_CIRCULAR_SURVEY_TIME auto start = std::chrono::high_resolution_clock::now(); #endif // If the transects are getting rebuilt then any previously loaded // mission items are now invalid. if (_loadedMissionItemsParent) { _loadedMissionItems.clear(); _loadedMissionItemsParent->deleteLater(); _loadedMissionItemsParent = nullptr; } // Store raw transects. const auto &transectsENU = this->_workerOutput->transects; const auto &ori = this->_referencePoint; for (auto &t : transectsENU) { QList trGeo; for (auto &v : t) { QGeoCoordinate c; snake::fromENU(ori, v, c); trGeo.append(c); } this->_rawTransects.append(trGeo); } // Store route. const auto &transectsInfo = this->_workerOutput->transectsInfo; const auto &route = this->_workerOutput->route; // Find index of first waypoint. std::size_t idxFirst = 0; const auto &infoFirst = transectsInfo.front(); const auto &firstTransect = transectsENU[infoFirst.index]; const auto &firstWaypoint = infoFirst.reversed ? firstTransect.back() : firstTransect.front(); double th = 0.001; for (std::size_t i = 0; i < route.size(); ++i) { auto dist = bg::distance(route[i], firstWaypoint); if (dist < th) { idxFirst = i; break; } } // Find index of last waypoint. std::size_t idxLast = route.size() - 1; const auto &infoLast = transectsInfo.back(); const auto &lastTransect = transectsENU[infoLast.index]; const auto &lastWaypoint = infoLast.reversed ? lastTransect.front() : lastTransect.back(); for (long i = route.size() - 1; i >= 0; --i) { auto dist = bg::distance(route[i], lastWaypoint); if (dist < th) { idxLast = i; break; } } // Convert to geo coordinates. QList list; for (std::size_t i = idxFirst; i <= idxLast; ++i) { auto &vertex = route[i]; QGeoCoordinate c; snake::fromENU(ori, vertex, c); list.append(CoordInfo_t{c, CoordTypeInterior}); } this->_transects.append(list); // Mark transect as stored and ready. this->_needsStoring = false; this->_transectsDirty = false; #ifdef SHOW_CIRCULAR_SURVEY_TIME qWarning() << "CS::rebuildTransectsPhase1(): store: " << std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start) .count() << " ms"; #endif } // Reverse transects only. else if (this->_needsReversal) { if (this->_transects.size() > 0) { auto &t = this->_transects.front(); QList list; list.reserve(t.size()); for (auto it = t.end() - 1; it >= t.begin(); --it) { list.append(*it); } this->_transects.clear(); this->_transects.append(list); } this->_needsReversal = false; } // Start calculation. else { #ifdef SHOW_CIRCULAR_SURVEY_TIME auto start = std::chrono::high_resolution_clock::now(); #endif this->_transects.clear(); this->_rawTransects.clear(); // Prepare data. auto ref = this->_referencePoint; auto polygon = this->_surveyAreaPolygon.coordinateList(); for (auto &v : polygon) { v.setAltitude(0); } auto safeArea = this->_safeArea; for (auto &v : safeArea) { v.setAltitude(0); } auto depot = this->_depot; snake::BoostPolygon safeAreaENU; bool useDepot = false; if (this->_depot.isValid() && this->_safeArea.size() >= 3) { useDepot = true; snake::areaToEnu(ref, safeArea, safeAreaENU); } else { snake::areaToEnu(ref, polygon, safeAreaENU); } auto distance = snake::Length( this->_transectDistance.rawValue().toDouble() * bu::si::meter); auto minLength = snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter); auto alpha = snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree); // Select survey type. if (this->_type.rawValue().toUInt() == integral(Type::Circular)) { if (alpha >= snake::Angle(0.3 * bu::degree::degree) && alpha <= snake::Angle(45 * bu::degree::degree)) { auto generator = [ref, depot, useDepot, polygon, distance, alpha, minLength](snake::Transects &transects) -> bool { return circularTransects(ref, depot, useDepot, polygon, distance, alpha, minLength, transects); }; // Start routing worker. this->_pWorker->route(safeAreaENU, generator); } else { if (alpha < snake::Angle(0.3 * bu::degree::degree)) { this->_alpha.setCookedValue(QVariant(0.3)); } else { this->_alpha.setCookedValue(QVariant(45)); } } } else if (this->_type.rawValue().toUInt() == integral(Type::Linear)) { auto generator = [ref, depot, useDepot, polygon, distance, alpha, minLength](snake::Transects &transects) -> bool { return linearTransects(ref, depot, useDepot, polygon, distance, alpha, minLength, transects); }; // Start routing worker. this->_pWorker->route(safeAreaENU, generator); } else { qWarning() << "CircularSurvey::rebuildTransectsPhase1(): invalid survey type:" << this->_type.rawValue().toUInt(); } // Mark transects as dirty. this->_transectsDirty = true; #ifdef SHOW_CIRCULAR_SURVEY_TIME qWarning() << "CS::rebuildTransectsPhase1(): start: " << std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start) .count() << " ms"; #endif } } void CircularSurvey::_recalcComplexDistance() { _complexDistance = 0; if (_transectsDirty) return; for (int i = 0; i < _visualTransectPoints.count() - 1; i++) { _complexDistance += _visualTransectPoints[i].value().distanceTo( _visualTransectPoints[i + 1].value()); } emit complexDistanceChanged(); } // no cameraShots in Circular Survey, add if desired void CircularSurvey::_recalcCameraShots() { _cameraShots = 0; } void CircularSurvey::_setTransects(CircularSurvey::PtrRoutingData pRoute) { this->_workerOutput = pRoute; this->_needsStoring = true; this->_rebuildTransects(); } Fact *CircularSurvey::minLength() { return &_minLength; } Fact *CircularSurvey::type() { return &_type; } int CircularSurvey::typeCount() const { return int(integral(Type::Count)); } bool CircularSurvey::calculating() const { return this->_pWorker->calculating(); } bool circularTransects(const QGeoCoordinate &ref, const QGeoCoordinate &depot, bool useDepot, const QList &polygon, snake::Length deltaR, snake::Angle deltaAlpha, snake::Length minLength, snake::Transects &transects) { #ifdef SHOW_CIRCULAR_SURVEY_TIME auto s1 = std::chrono::high_resolution_clock::now(); #endif // Check preconitions if (polygon.size() >= 3) { using namespace boost::units; // Convert geo polygon to ENU polygon. snake::BoostPolygon polygonENU; snake::BoostPoint originENU{0, 0}; snake::BoostPoint depotENU{0, 0}; snake::areaToEnu(ref, polygon, polygonENU); snake::toENU(ref, ref, originENU); snake::toENU(ref, depot, depotENU); std::string error; // Check validity. if (!bg::is_valid(polygonENU, error)) { #ifdef DEBUG_CIRCULAR_SURVEY qWarning() << "CS::circularTransects(): " "invalid polygon."; qWarning() << error.c_str(); std::stringstream ss; ss << bg::wkt(polygonENU); qWarning() << ss.str().c_str(); #endif } else { // Calculate polygon distances and angles. std::vector distances; distances.reserve(polygonENU.outer().size()); std::vector angles; angles.reserve(polygonENU.outer().size()); //#ifdef DEBUG_CIRCULAR_SURVEY // qWarning() << "CS::circularTransects():"; //#endif for (const auto &p : polygonENU.outer()) { snake::Length distance = bg::distance(originENU, p) * si::meter; distances.push_back(distance); snake::Angle alpha = (std::atan2(p.get<1>(), p.get<0>())) * si::radian; alpha = alpha < 0 * si::radian ? alpha + 2 * M_PI * si::radian : alpha; angles.push_back(alpha); //#ifdef DEBUG_CIRCULAR_SURVEY // qWarning() << "distances, angles, coordinates:"; // qWarning() << to_string(distance).c_str(); // qWarning() << to_string(snake::Degree(alpha)).c_str(); // qWarning() << "x = " << p.get<0>() << "y = " << p.get<1>(); //#endif } auto rMin = deltaR; // minimal circle radius snake::Angle alpha1(0 * degree::degree); snake::Angle alpha2(360 * degree::degree); // Determine r_min by successive approximation if (!bg::within(originENU, polygonENU)) { rMin = bg::distance(originENU, polygonENU) * si::meter; } auto rMax = (*std::max_element(distances.begin(), distances.end())); // maximal circle radius // Scale parameters and coordinates. const auto rMinScaled = ClipperLib::cInt(std::round(rMin.value() * CLIPPER_SCALE)); const auto deltaRScaled = ClipperLib::cInt(std::round(deltaR.value() * CLIPPER_SCALE)); auto originScaled = ClipperLib::IntPoint{ ClipperLib::cInt(std::round(originENU.get<0>())), ClipperLib::cInt(std::round(originENU.get<1>()))}; // Generate circle sectors. auto rScaled = rMinScaled; const auto nTran = long(std::ceil(((rMax - rMin) / deltaR).value())); vector sectors(nTran, ClipperLib::Path()); const auto nSectors = long(std::round(((alpha2 - alpha1) / deltaAlpha).value())); //#ifdef DEBUG_CIRCULAR_SURVEY // qWarning() << "CS::circularTransects(): sector parameres:"; // qWarning() << "alpha1: " << // to_string(snake::Degree(alpha1)).c_str(); qWarning() << "alpha2: " // << to_string(snake::Degree(alpha2)).c_str(); qWarning() << "n: " // << to_string((alpha2 - alpha1) / deltaAlpha).c_str(); qWarning() // << "nSectors: " << nSectors; qWarning() << "rMin: " << // to_string(rMin).c_str(); qWarning() << "rMax: " << // to_string(rMax).c_str(); qWarning() << "nTran: " << nTran; //#endif using ClipperCircle = GenericCircle; for (auto §or : sectors) { ClipperCircle circle(rScaled, originScaled); approximate(circle, nSectors, sector); rScaled += deltaRScaled; } // Clip sectors to polygonENU. ClipperLib::Path polygonClipper; snake::BoostPolygon shrinked; snake::offsetPolygon(polygonENU, shrinked, -0.3); auto &outer = shrinked.outer(); polygonClipper.reserve(outer.size()); for (auto it = outer.begin(); it < outer.end() - 1; ++it) { auto x = ClipperLib::cInt(std::round(it->get<0>() * CLIPPER_SCALE)); auto y = ClipperLib::cInt(std::round(it->get<1>() * CLIPPER_SCALE)); polygonClipper.push_back(ClipperLib::IntPoint{x, y}); } ClipperLib::Clipper clipper; clipper.AddPath(polygonClipper, ClipperLib::ptClip, true); clipper.AddPaths(sectors, ClipperLib::ptSubject, false); ClipperLib::PolyTree transectsClipper; clipper.Execute(ClipperLib::ctIntersection, transectsClipper, ClipperLib::pftNonZero, ClipperLib::pftNonZero); // Extract transects from PolyTree and convert them to // BoostLineString if (useDepot) { transects.push_back(snake::BoostLineString{depotENU}); } for (const auto &child : transectsClipper.Childs) { snake::BoostLineString transect; transect.reserve(child->Contour.size()); for (const auto &vertex : child->Contour) { auto x = static_cast(vertex.X) / CLIPPER_SCALE; auto y = static_cast(vertex.Y) / CLIPPER_SCALE; transect.push_back(snake::BoostPoint(x, y)); } transects.push_back(transect); } // Join sectors which where slit due to clipping. const double th = 0.01; for (auto ito = transects.begin(); ito < transects.end(); ++ito) { for (auto iti = ito + 1; iti < transects.end(); ++iti) { auto dist1 = bg::distance(ito->front(), iti->front()); if (dist1 < th) { snake::BoostLineString temp; for (auto it = iti->end() - 1; it >= iti->begin(); --it) { temp.push_back(*it); } temp.insert(temp.end(), ito->begin(), ito->end()); *ito = temp; transects.erase(iti); break; } auto dist2 = bg::distance(ito->front(), iti->back()); if (dist2 < th) { snake::BoostLineString temp; temp.insert(temp.end(), iti->begin(), iti->end()); temp.insert(temp.end(), ito->begin(), ito->end()); *ito = temp; transects.erase(iti); break; } auto dist3 = bg::distance(ito->back(), iti->front()); if (dist3 < th) { snake::BoostLineString temp; temp.insert(temp.end(), ito->begin(), ito->end()); temp.insert(temp.end(), iti->begin(), iti->end()); *ito = temp; transects.erase(iti); break; } auto dist4 = bg::distance(ito->back(), iti->back()); if (dist4 < th) { snake::BoostLineString temp; temp.insert(temp.end(), ito->begin(), ito->end()); for (auto it = iti->end() - 1; it >= iti->begin(); --it) { temp.push_back(*it); } *ito = temp; transects.erase(iti); break; } } } // Remove short transects auto begin = useDepot ? transects.begin() + 1 : transects.begin(); for (auto it = begin; it < transects.end();) { if (bg::length(*it) < minLength.value()) { it = transects.erase(it); } else { ++it; } } if (!useDepot) { // Move transect with min. distance to the front. auto minDist = std::numeric_limits::max(); auto minIt = transects.begin(); bool reverse = false; for (auto it = transects.begin(); it < transects.end(); ++it) { auto distFront = bg::distance(originENU, it->front()); auto distBack = bg::distance(originENU, it->back()); if (distFront < minDist) { minDist = distFront; minIt = it; reverse = false; } if (distBack < minDist) { minDist = distBack; minIt = it; reverse = true; } } // Swap and reverse (if necessary). if (minIt != transects.begin()) { auto minTransect = *minIt; if (reverse) { snake::BoostLineString rev; for (auto it = minTransect.end() - 1; it >= minTransect.begin(); --it) { rev.push_back(*it); } minTransect = rev; } *minIt = *transects.begin(); *transects.begin() = minTransect; } } #ifdef SHOW_CIRCULAR_SURVEY_TIME qWarning() << "CS::circularTransects(): transect gen. time: " << std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - s1) .count() << " ms"; #endif return true; } } return false; } bool linearTransects(const QGeoCoordinate &origin, const QGeoCoordinate &depot, bool useDepot, const QList &polygon, snake::Length distance, snake::Angle angle, snake::Length minLength, snake::Transects &transects) { namespace tr = bg::strategy::transform; #ifdef SHOW_CIRCULAR_SURVEY_TIME auto s1 = std::chrono::high_resolution_clock::now(); #endif // Check preconitions if (polygon.size() >= 3) { // Convert to ENU system. snake::BoostPolygon polygonENU; snake::areaToEnu(origin, polygon, polygonENU); std::string error; // Check validity. if (!bg::is_valid(polygonENU, error)) { #ifdef DEBUG_CIRCULAR_SURVEY qWarning() << "CS::circularTransects(): " "invalid polygon."; qWarning() << error.c_str(); std::stringstream ss; ss << bg::wkt(polygonENU); qWarning() << ss.str().c_str(); #endif } else { snake::BoostPoint depotENU; snake::toENU(origin, depot, depotENU); tr::rotate_transformer rotate(angle.value() * 180 / M_PI); // Rotate polygon by angle and calculate bounding box. snake::BoostPolygon polygonENURotated; bg::transform(polygonENU, polygonENURotated, rotate); snake::BoostBox box; boost::geometry::envelope(polygonENURotated, box); double x0 = box.min_corner().get<0>(); double y0 = box.min_corner().get<1>(); double x1 = box.max_corner().get<0>(); double y1 = box.max_corner().get<1>(); // Generate transects and convert them to clipper path. size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects vector transectsClipper; transectsClipper.reserve(num_t); for (size_t i = 0; i < num_t; ++i) { // calculate transect snake::BoostPoint v1{x0, y0 + i * distance.value()}; snake::BoostPoint v2{x1, y0 + i * distance.value()}; snake::BoostLineString transect; transect.push_back(v1); transect.push_back(v2); // transform back snake::BoostLineString temp_transect; tr::rotate_transformer rotate_back( -angle.value() * 180 / M_PI); bg::transform(transect, temp_transect, rotate_back); // to clipper ClipperLib::IntPoint c1{static_cast( temp_transect[0].get<0>() * CLIPPER_SCALE), static_cast( temp_transect[0].get<1>() * CLIPPER_SCALE)}; ClipperLib::IntPoint c2{static_cast( temp_transect[1].get<0>() * CLIPPER_SCALE), static_cast( temp_transect[1].get<1>() * CLIPPER_SCALE)}; ClipperLib::Path path{c1, c2}; transectsClipper.push_back(path); } if (transectsClipper.size() == 0) { std::stringstream ss; ss << "Not able to generate transects. Parameter: distance = " << distance << std::endl; qWarning() << "CircularSurvey::linearTransects(): " << ss.str().c_str(); return false; } // Convert measurement area to clipper path. snake::BoostPolygon shrinked; snake::offsetPolygon(polygonENU, shrinked, -0.2); auto &outer = shrinked.outer(); ClipperLib::Path polygonClipper; for (auto vertex : outer) { polygonClipper.push_back(ClipperLib::IntPoint{ static_cast(vertex.get<0>() * CLIPPER_SCALE), static_cast(vertex.get<1>() * CLIPPER_SCALE)}); } // Perform clipping. // Clip transects to measurement area. ClipperLib::Clipper clipper; clipper.AddPath(polygonClipper, ClipperLib::ptClip, true); clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false); ClipperLib::PolyTree clippedTransecs; clipper.Execute(ClipperLib::ctIntersection, clippedTransecs, ClipperLib::pftNonZero, ClipperLib::pftNonZero); // Extract transects from PolyTree and convert them to BoostLineString if (useDepot) { transects.push_back(snake::BoostLineString{depotENU}); } for (const auto &child : clippedTransecs.Childs) { const auto &clipperTransect = child->Contour; snake::BoostPoint v1{ static_cast(clipperTransect[0].X) / CLIPPER_SCALE, static_cast(clipperTransect[0].Y) / CLIPPER_SCALE}; snake::BoostPoint v2{ static_cast(clipperTransect[1].X) / CLIPPER_SCALE, static_cast(clipperTransect[1].Y) / CLIPPER_SCALE}; snake::BoostLineString transect{v1, v2}; if (bg::length(transect) >= minLength.value()) { transects.push_back(transect); } } if (transects.size() == 0) { std::stringstream ss; ss << "Not able to generate transects. Parameter: minLength = " << minLength << std::endl; qWarning() << "CircularSurvey::linearTransects(): " << ss.str().c_str(); return false; } #ifdef SHOW_CIRCULAR_SURVEY_TIME qWarning() << "CS::circularTransects(): transect gen. time: " << std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - s1) .count() << " ms"; #endif return true; } } return false; } /*! \class CircularSurveyComplexItem \inmodule Wima \brief The \c CircularSurveyComplexItem class provides a survey mission item with circular transects around a point of interest. CircularSurveyComplexItem class provides a survey mission item with circular transects around a point of interest. Within the \c Wima module it's used to scan a defined area with constant angle (circular transects) to the base station (point of interest). \sa WimaArea */