// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // [START program] // [START import] #include "ortools/linear_solver/linear_solver.h" // [END import] // [START program_part1] namespace operations_research { // [START data_model] struct DataModel { const std::vector> constraint_coeffs{ {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; const std::vector bounds{250, 285, 211, 315}; const std::vector obj_coeffs{7, 8, 2, 9, 6}; const int num_vars = 5; const int num_constraints = 4; }; // [END data_model] void MipVarArray() { // [START data] DataModel data; // [END data] // [END program_part1] // [START solver] // Create the mip solver with the CBC backend. MPSolver solver("mip_var_array", MPSolver::CBC_MIXED_INTEGER_PROGRAMMING); // [END solver] // [START program_part2] // [START variables] const double infinity = solver.infinity(); // x[j] is an array of non-negative, integer variables. std::vector x(data.num_vars); for (int j = 0; j < data.num_vars; ++j) { x[j] = solver.MakeIntVar(0.0, infinity, ""); } LOG(INFO) << "Number of variables = " << solver.NumVariables(); // [END variables] // [START constraints] // Create the constraints. for (int i = 0; i < data.num_constraints; ++i) { MPConstraint* constraint = solver.MakeRowConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.num_vars; ++j) { constraint->SetCoefficient(x[j], data.constraint_coeffs[i][j]); } } LOG(INFO) << "Number of constraints = " << solver.NumConstraints(); // [END constraints] // [START objective] // Create the objective function. MPObjective* const objective = solver.MutableObjective(); for (int j = 0; j < data.num_vars; ++j) { objective->SetCoefficient(x[j], data.obj_coeffs[j]); } objective->SetMaximization(); // [END objective] // [START solve] const MPSolver::ResultStatus result_status = solver.Solve(); // [END solve] // [START print_solution] // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution."; } LOG(INFO) << "Solution:"; LOG(INFO) << "Optimal objective value = " << objective->Value(); for (int j = 0; j < data.num_vars; ++j) { LOG(INFO) << "x[" << j << "] = " << x[j]->solution_value(); } // [END print_solution] } } // namespace operations_research int main(int argc, char** argv) { operations_research::MipVarArray(); return EXIT_SUCCESS; } // [END program_part2] // [END program]