// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // [START program] // [START import] #include #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" // [END import] namespace operations_research { void AssignmentMip() { // Data // [START data_model] const std::vector> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = costs.size(); const int num_tasks = costs[0].size(); // [END data_model] // Solver // [START solver] // Create the mip solver with the CBC backend. MPSolver solver("AssignmentMip", MPSolver::CBC_MIXED_INTEGER_PROGRAMMING); // [END solver] // Variables // [START variables] // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector> x( num_workers, std::vector(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = solver.MakeIntVar(0, 1, ""); } } // [END variables] // Constraints // [START constraints] // Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { LinearExpr worker_sum; for (int j = 0; j < num_tasks; ++j) { worker_sum += x[i][j]; } solver.MakeRowConstraint(worker_sum <= 1.0); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { LinearExpr task_sum; for (int i = 0; i < num_workers; ++i) { task_sum += x[i][j]; } solver.MakeRowConstraint(task_sum == 1.0); } // [END constraints] // Objective. // [START objective] MPObjective* const objective = solver.MutableObjective(); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { objective->SetCoefficient(x[i][j], costs[i][j]); } } objective->SetMinimization(); // [END objective] // Solve // [START solve] const MPSolver::ResultStatus result_status = solver.Solve(); // [END solve] // Print solution. // [START print_solution] // Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL & result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j]->solution_value() > 0.5) { LOG(INFO) << "Worker " << i << " assigned to task " << j << ". Cost = " << costs[i][j]; } } } // [END print_solution] } } // namespace operations_research int main(int argc, char** argv) { operations_research::AssignmentMip(); return EXIT_SUCCESS; } // [END program]