// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ortools/base/commandlineflags.h" #include "ortools/base/logging.h" #include "ortools/graph/ebert_graph.h" #include "ortools/graph/max_flow.h" #include "ortools/graph/min_cost_flow.h" namespace operations_research { // ----- Min Cost Flow ----- // Test on a 4x4 matrix. Example taken from // http://www.ee.oulu.fi/~mpa/matreng/eem1_2-1.htm void MinCostFlowOn4x4Matrix() { LOG(INFO) << "Min Cost Flow on 4x4 Matrix"; const int kNumSources = 4; const int kNumTargets = 4; const CostValue kCost[kNumSources][kNumTargets] = {{90, 75, 75, 80}, {35, 85, 55, 65}, {125, 95, 90, 105}, {45, 110, 95, 115}}; const CostValue kExpectedCost = 275; StarGraph graph(kNumSources + kNumTargets, kNumSources * kNumTargets); MinCostFlow min_cost_flow(&graph); for (NodeIndex source = 0; source < kNumSources; ++source) { for (NodeIndex target = 0; target < kNumTargets; ++target) { ArcIndex arc = graph.AddArc(source, kNumSources + target); min_cost_flow.SetArcUnitCost(arc, kCost[source][target]); min_cost_flow.SetArcCapacity(arc, 1); } } for (NodeIndex source = 0; source < kNumSources; ++source) { min_cost_flow.SetNodeSupply(source, 1); } for (NodeIndex target = 0; target < kNumTargets; ++target) { min_cost_flow.SetNodeSupply(kNumSources + target, -1); } CHECK(min_cost_flow.Solve()); CHECK_EQ(MinCostFlow::OPTIMAL, min_cost_flow.status()); CostValue total_flow_cost = min_cost_flow.GetOptimalCost(); CHECK_EQ(kExpectedCost, total_flow_cost); } // ----- Max Flow ----- void MaxFeasibleFlow() { LOG(INFO) << "Max Feasible Flow"; const int kNumNodes = 6; const int kNumArcs = 9; const NodeIndex kTail[kNumArcs] = {0, 0, 0, 0, 1, 2, 3, 3, 4}; const NodeIndex kHead[kNumArcs] = {1, 2, 3, 4, 3, 4, 4, 5, 5}; const FlowQuantity kCapacity[kNumArcs] = {5, 8, 5, 3, 4, 5, 6, 6, 4}; const FlowQuantity kExpectedFlow[kNumArcs] = {1, 1, 5, 3, 1, 1, 0, 6, 4}; const FlowQuantity kExpectedTotalFlow = 10; StarGraph graph(kNumNodes, kNumArcs); MaxFlow max_flow(&graph, 0, kNumNodes - 1); for (int i = 0; i < kNumArcs; ++i) { ArcIndex arc = graph.AddArc(kTail[i], kHead[i]); max_flow.SetArcCapacity(arc, kCapacity[i]); } CHECK(max_flow.Solve()); CHECK_EQ(MaxFlow::OPTIMAL, max_flow.status()); FlowQuantity total_flow = max_flow.GetOptimalFlow(); CHECK_EQ(total_flow, kExpectedTotalFlow); for (int i = 0; i < kNumArcs; ++i) { CHECK_EQ(kExpectedFlow[i], max_flow.Flow(i)) << " i = " << i; } } } // namespace operations_research int main(int argc, char** argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); operations_research::MinCostFlowOn4x4Matrix(); operations_research::MaxFeasibleFlow(); return EXIT_SUCCESS; }