/** * \file MagneticModel.cpp * \brief Implementation for GeographicLib::MagneticModel class * * Copyright (c) Charles Karney (2011-2019) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #include #include #include #include #include #if !defined(GEOGRAPHICLIB_DATA) # if defined(_WIN32) # define GEOGRAPHICLIB_DATA "C:/ProgramData/GeographicLib" # else # define GEOGRAPHICLIB_DATA "/usr/local/share/GeographicLib" # endif #endif #if !defined(GEOGRAPHICLIB_MAGNETIC_DEFAULT_NAME) # define GEOGRAPHICLIB_MAGNETIC_DEFAULT_NAME "wmm2020" #endif #if defined(_MSC_VER) // Squelch warnings about unsafe use of getenv # pragma warning (disable: 4996) #endif namespace GeographicLib { using namespace std; MagneticModel::MagneticModel(const std::string& name,const std::string& path, const Geocentric& earth, int Nmax, int Mmax) : _name(name) , _dir(path) , _description("NONE") , _date("UNKNOWN") , _t0(Math::NaN()) , _dt0(1) , _tmin(Math::NaN()) , _tmax(Math::NaN()) , _a(Math::NaN()) , _hmin(Math::NaN()) , _hmax(Math::NaN()) , _Nmodels(1) , _Nconstants(0) , _nmx(-1) , _mmx(-1) , _norm(SphericalHarmonic::SCHMIDT) , _earth(earth) { if (_dir.empty()) _dir = DefaultMagneticPath(); bool truncate = Nmax >= 0 || Mmax >= 0; if (truncate) { if (Nmax >= 0 && Mmax < 0) Mmax = Nmax; if (Nmax < 0) Nmax = numeric_limits::max(); if (Mmax < 0) Mmax = numeric_limits::max(); } ReadMetadata(_name); _G.resize(_Nmodels + 1 + _Nconstants); _H.resize(_Nmodels + 1 + _Nconstants); { string coeff = _filename + ".cof"; ifstream coeffstr(coeff.c_str(), ios::binary); if (!coeffstr.good()) throw GeographicErr("Error opening " + coeff); char id[idlength_ + 1]; coeffstr.read(id, idlength_); if (!coeffstr.good()) throw GeographicErr("No header in " + coeff); id[idlength_] = '\0'; if (_id != string(id)) throw GeographicErr("ID mismatch: " + _id + " vs " + id); for (int i = 0; i < _Nmodels + 1 + _Nconstants; ++i) { int N, M; if (truncate) { N = Nmax; M = Mmax; } SphericalEngine::coeff::readcoeffs(coeffstr, N, M, _G[i], _H[i], truncate); if (!(M < 0 || _G[i][0] == 0)) throw GeographicErr("A degree 0 term is not permitted"); _harm.push_back(SphericalHarmonic(_G[i], _H[i], N, N, M, _a, _norm)); _nmx = max(_nmx, _harm.back().Coefficients().nmx()); _mmx = max(_mmx, _harm.back().Coefficients().mmx()); } int pos = int(coeffstr.tellg()); coeffstr.seekg(0, ios::end); if (pos != coeffstr.tellg()) throw GeographicErr("Extra data in " + coeff); } } void MagneticModel::ReadMetadata(const std::string& name) { const char* spaces = " \t\n\v\f\r"; _filename = _dir + "/" + name + ".wmm"; ifstream metastr(_filename.c_str()); if (!metastr.good()) throw GeographicErr("Cannot open " + _filename); string line; getline(metastr, line); if (!(line.size() >= 6 && line.substr(0,5) == "WMMF-")) throw GeographicErr(_filename + " does not contain WMMF-n signature"); string::size_type n = line.find_first_of(spaces, 5); if (n != string::npos) n -= 5; string version(line, 5, n); if (!(version == "1" || version == "2")) throw GeographicErr("Unknown version in " + _filename + ": " + version); string key, val; while (getline(metastr, line)) { if (!Utility::ParseLine(line, key, val)) continue; // Process key words if (key == "Name") _name = val; else if (key == "Description") _description = val; else if (key == "ReleaseDate") _date = val; else if (key == "Radius") _a = Utility::val(val); else if (key == "Type") { if (!(val == "Linear" || val == "linear")) throw GeographicErr("Only linear models are supported"); } else if (key == "Epoch") _t0 = Utility::val(val); else if (key == "DeltaEpoch") _dt0 = Utility::val(val); else if (key == "NumModels") _Nmodels = Utility::val(val); else if (key == "NumConstants") _Nconstants = Utility::val(val); else if (key == "MinTime") _tmin = Utility::val(val); else if (key == "MaxTime") _tmax = Utility::val(val); else if (key == "MinHeight") _hmin = Utility::val(val); else if (key == "MaxHeight") _hmax = Utility::val(val); else if (key == "Normalization") { if (val == "FULL" || val == "Full" || val == "full") _norm = SphericalHarmonic::FULL; else if (val == "SCHMIDT" || val == "Schmidt" || val == "schmidt") _norm = SphericalHarmonic::SCHMIDT; else throw GeographicErr("Unknown normalization " + val); } else if (key == "ByteOrder") { if (val == "Big" || val == "big") throw GeographicErr("Only little-endian ordering is supported"); else if (!(val == "Little" || val == "little")) throw GeographicErr("Unknown byte ordering " + val); } else if (key == "ID") _id = val; // else unrecognized keywords are skipped } // Check values if (!(Math::isfinite(_a) && _a > 0)) throw GeographicErr("Reference radius must be positive"); if (!(_t0 > 0)) throw GeographicErr("Epoch time not defined"); if (_tmin >= _tmax) throw GeographicErr("Min time exceeds max time"); if (_hmin >= _hmax) throw GeographicErr("Min height exceeds max height"); if (int(_id.size()) != idlength_) throw GeographicErr("Invalid ID"); if (_Nmodels < 1) throw GeographicErr("NumModels must be positive"); if (!(_Nconstants == 0 || _Nconstants == 1)) throw GeographicErr("NumConstants must be 0 or 1"); if (!(_dt0 > 0)) { if (_Nmodels > 1) throw GeographicErr("DeltaEpoch must be positive"); else _dt0 = 1; } } void MagneticModel::Field(real t, real lat, real lon, real h, bool diffp, real& Bx, real& By, real& Bz, real& Bxt, real& Byt, real& Bzt) const { t -= _t0; int n = max(min(int(floor(t / _dt0)), _Nmodels - 1), 0); bool interpolate = n + 1 < _Nmodels; t -= n * _dt0; real X, Y, Z; real M[Geocentric::dim2_]; _earth.IntForward(lat, lon, h, X, Y, Z, M); // Components in geocentric basis // initial values to suppress warning real BX0 = 0, BY0 = 0, BZ0 = 0, BX1 = 0, BY1 = 0, BZ1 = 0; real BXc = 0, BYc = 0, BZc = 0; _harm[n](X, Y, Z, BX0, BY0, BZ0); _harm[n + 1](X, Y, Z, BX1, BY1, BZ1); if (_Nconstants) _harm[_Nmodels + 1](X, Y, Z, BXc, BYc, BZc); if (interpolate) { // Convert to a time derivative BX1 = (BX1 - BX0) / _dt0; BY1 = (BY1 - BY0) / _dt0; BZ1 = (BZ1 - BZ0) / _dt0; } BX0 += t * BX1 + BXc; BY0 += t * BY1 + BYc; BZ0 += t * BZ1 + BZc; if (diffp) { Geocentric::Unrotate(M, BX1, BY1, BZ1, Bxt, Byt, Bzt); Bxt *= - _a; Byt *= - _a; Bzt *= - _a; } Geocentric::Unrotate(M, BX0, BY0, BZ0, Bx, By, Bz); Bx *= - _a; By *= - _a; Bz *= - _a; } MagneticCircle MagneticModel::Circle(real t, real lat, real h) const { real t1 = t - _t0; int n = max(min(int(floor(t1 / _dt0)), _Nmodels - 1), 0); bool interpolate = n + 1 < _Nmodels; t1 -= n * _dt0; real X, Y, Z, M[Geocentric::dim2_]; _earth.IntForward(lat, 0, h, X, Y, Z, M); // Y = 0, cphi = M[7], sphi = M[8]; return (_Nconstants == 0 ? MagneticCircle(_a, _earth._f, lat, h, t, M[7], M[8], t1, _dt0, interpolate, _harm[n].Circle(X, Z, true), _harm[n + 1].Circle(X, Z, true)) : MagneticCircle(_a, _earth._f, lat, h, t, M[7], M[8], t1, _dt0, interpolate, _harm[n].Circle(X, Z, true), _harm[n + 1].Circle(X, Z, true), _harm[_Nmodels + 1].Circle(X, Z, true))); } void MagneticModel::FieldComponents(real Bx, real By, real Bz, real Bxt, real Byt, real Bzt, real& H, real& F, real& D, real& I, real& Ht, real& Ft, real& Dt, real& It) { H = Math::hypot(Bx, By); Ht = H != 0 ? (Bx * Bxt + By * Byt) / H : Math::hypot(Bxt, Byt); D = H != 0 ? Math::atan2d(Bx, By) : Math::atan2d(Bxt, Byt); Dt = (H != 0 ? (By * Bxt - Bx * Byt) / Math::sq(H) : 0) / Math::degree(); F = Math::hypot(H, Bz); Ft = F != 0 ? (H * Ht + Bz * Bzt) / F : Math::hypot(Ht, Bzt); I = F != 0 ? Math::atan2d(-Bz, H) : Math::atan2d(-Bzt, Ht); It = (F != 0 ? (Bz * Ht - H * Bzt) / Math::sq(F) : 0) / Math::degree(); } std::string MagneticModel::DefaultMagneticPath() { string path; char* magneticpath = getenv("GEOGRAPHICLIB_MAGNETIC_PATH"); if (magneticpath) path = string(magneticpath); if (!path.empty()) return path; char* datapath = getenv("GEOGRAPHICLIB_DATA"); if (datapath) path = string(datapath); return (!path.empty() ? path : string(GEOGRAPHICLIB_DATA)) + "/magnetic"; } std::string MagneticModel::DefaultMagneticName() { string name; char* magneticname = getenv("GEOGRAPHICLIB_MAGNETIC_NAME"); if (magneticname) name = string(magneticname); return !name.empty() ? name : string(GEOGRAPHICLIB_MAGNETIC_DEFAULT_NAME); } } // namespace GeographicLib