/** * \file Geodesic.cpp * \brief Implementation for GeographicLib::Geodesic class * * Copyright (c) Charles Karney (2009-2019) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ * * This is a reformulation of the geodesic problem. The notation is as * follows: * - at a general point (no suffix or 1 or 2 as suffix) * - phi = latitude * - beta = latitude on auxiliary sphere * - omega = longitude on auxiliary sphere * - lambda = longitude * - alpha = azimuth of great circle * - sigma = arc length along great circle * - s = distance * - tau = scaled distance (= sigma at multiples of pi/2) * - at northwards equator crossing * - beta = phi = 0 * - omega = lambda = 0 * - alpha = alpha0 * - sigma = s = 0 * - a 12 suffix means a difference, e.g., s12 = s2 - s1. * - s and c prefixes mean sin and cos **********************************************************************/ #include #include #if defined(_MSC_VER) // Squelch warnings about potentially uninitialized local variables and // constant conditional expressions # pragma warning (disable: 4701 4127) #endif namespace GeographicLib { using namespace std; Geodesic::Geodesic(real a, real f) : maxit2_(maxit1_ + Math::digits() + 10) // Underflow guard. We require // tiny_ * epsilon() > 0 // tiny_ + epsilon() == epsilon() , tiny_(sqrt(numeric_limits::min())) , tol0_(numeric_limits::epsilon()) // Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse // case 52.784459512564 0 -52.784459512563990912 179.634407464943777557 // which otherwise failed for Visual Studio 10 (Release and Debug) , tol1_(200 * tol0_) , tol2_(sqrt(tol0_)) , tolb_(tol0_ * tol2_) // Check on bisection interval , xthresh_(1000 * tol2_) , _a(a) , _f(f) , _f1(1 - _f) , _e2(_f * (2 - _f)) , _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2) , _n(_f / ( 2 - _f)) , _b(_a * _f1) , _c2((Math::sq(_a) + Math::sq(_b) * (_e2 == 0 ? 1 : Math::eatanhe(real(1), (_f < 0 ? -1 : 1) * sqrt(abs(_e2))) / _e2)) / 2) // authalic radius squared // The sig12 threshold for "really short". Using the auxiliary sphere // solution with dnm computed at (bet1 + bet2) / 2, the relative error in // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2. // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a // given f and sig12, the max error occurs for lines near the pole. If // the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error // increases by a factor of 2.) Setting this equal to epsilon gives // sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100) // and max(0.001, abs(f)) stops etol2 getting too large in the nearly // spherical case. , _etol2(real(0.1) * tol2_ / sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 )) { if (!(Math::isfinite(_a) && _a > 0)) throw GeographicErr("Equatorial radius is not positive"); if (!(Math::isfinite(_b) && _b > 0)) throw GeographicErr("Polar semi-axis is not positive"); A3coeff(); C3coeff(); C4coeff(); } const Geodesic& Geodesic::WGS84() { static const Geodesic wgs84(Constants::WGS84_a(), Constants::WGS84_f()); return wgs84; } Math::real Geodesic::SinCosSeries(bool sinp, real sinx, real cosx, const real c[], int n) { // Evaluate // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) : // sum(c[i] * cos((2*i+1) * x), i, 0, n-1) // using Clenshaw summation. N.B. c[0] is unused for sin series // Approx operation count = (n + 5) mult and (2 * n + 2) add c += (n + sinp); // Point to one beyond last element real ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x) y0 = n & 1 ? *--c : 0, y1 = 0; // accumulators for sum // Now n is even n /= 2; while (n--) { // Unroll loop x 2, so accumulators return to their original role y1 = ar * y0 - y1 + *--c; y0 = ar * y1 - y0 + *--c; } return sinp ? 2 * sinx * cosx * y0 // sin(2 * x) * y0 : cosx * (y0 - y1); // cos(x) * (y0 - y1) } GeodesicLine Geodesic::Line(real lat1, real lon1, real azi1, unsigned caps) const { return GeodesicLine(*this, lat1, lon1, azi1, caps); } Math::real Geodesic::GenDirect(real lat1, real lon1, real azi1, bool arcmode, real s12_a12, unsigned outmask, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const { // Automatically supply DISTANCE_IN if necessary if (!arcmode) outmask |= DISTANCE_IN; return GeodesicLine(*this, lat1, lon1, azi1, outmask) . // Note the dot! GenPosition(arcmode, s12_a12, outmask, lat2, lon2, azi2, s12, m12, M12, M21, S12); } GeodesicLine Geodesic::GenDirectLine(real lat1, real lon1, real azi1, bool arcmode, real s12_a12, unsigned caps) const { azi1 = Math::AngNormalize(azi1); real salp1, calp1; // Guard against underflow in salp0. Also -0 is converted to +0. Math::sincosd(Math::AngRound(azi1), salp1, calp1); // Automatically supply DISTANCE_IN if necessary if (!arcmode) caps |= DISTANCE_IN; return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1, caps, arcmode, s12_a12); } GeodesicLine Geodesic::DirectLine(real lat1, real lon1, real azi1, real s12, unsigned caps) const { return GenDirectLine(lat1, lon1, azi1, false, s12, caps); } GeodesicLine Geodesic::ArcDirectLine(real lat1, real lon1, real azi1, real a12, unsigned caps) const { return GenDirectLine(lat1, lon1, azi1, true, a12, caps); } Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2, unsigned outmask, real& s12, real& salp1, real& calp1, real& salp2, real& calp2, real& m12, real& M12, real& M21, real& S12) const { // Compute longitude difference (AngDiff does this carefully). Result is // in [-180, 180] but -180 is only for west-going geodesics. 180 is for // east-going and meridional geodesics. real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s); // Make longitude difference positive. int lonsign = lon12 >= 0 ? 1 : -1; // If very close to being on the same half-meridian, then make it so. lon12 = lonsign * Math::AngRound(lon12); lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s); real lam12 = lon12 * Math::degree(), slam12, clam12; if (lon12 > 90) { Math::sincosd(lon12s, slam12, clam12); clam12 = -clam12; } else Math::sincosd(lon12, slam12, clam12); // If really close to the equator, treat as on equator. lat1 = Math::AngRound(Math::LatFix(lat1)); lat2 = Math::AngRound(Math::LatFix(lat2)); // Swap points so that point with higher (abs) latitude is point 1. // If one latitude is a nan, then it becomes lat1. int swapp = abs(lat1) < abs(lat2) ? -1 : 1; if (swapp < 0) { lonsign *= -1; swap(lat1, lat2); } // Make lat1 <= 0 int latsign = lat1 < 0 ? 1 : -1; lat1 *= latsign; lat2 *= latsign; // Now we have // // 0 <= lon12 <= 180 // -90 <= lat1 <= 0 // lat1 <= lat2 <= -lat1 // // longsign, swapp, latsign register the transformation to bring the // coordinates to this canonical form. In all cases, 1 means no change was // made. We make these transformations so that there are few cases to // check, e.g., on verifying quadrants in atan2. In addition, this // enforces some symmetries in the results returned. real sbet1, cbet1, sbet2, cbet2, s12x, m12x; Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1; // Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12 // will be <= 2*tiny for two points at the same pole. Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1); Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1; // Ensure cbet2 = +epsilon at poles Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2); // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is // a better measure. This logic is used in assigning calp2 in Lambda12. // Sometimes these quantities vanish and in that case we force bet2 = +/- // bet1 exactly. An example where is is necessary is the inverse problem // 48.522876735459 0 -48.52287673545898293 179.599720456223079643 // which failed with Visual Studio 10 (Release and Debug) if (cbet1 < -sbet1) { if (cbet2 == cbet1) sbet2 = sbet2 < 0 ? sbet1 : -sbet1; } else { if (abs(sbet2) == -sbet1) cbet2 = cbet1; } real dn1 = sqrt(1 + _ep2 * Math::sq(sbet1)), dn2 = sqrt(1 + _ep2 * Math::sq(sbet2)); real a12, sig12; // index zero element of this array is unused real Ca[nC_]; bool meridian = lat1 == -90 || slam12 == 0; if (meridian) { // Endpoints are on a single full meridian, so the geodesic might lie on // a meridian. calp1 = clam12; salp1 = slam12; // Head to the target longitude calp2 = 1; salp2 = 0; // At the target we're heading north real // tan(bet) = tan(sig) * cos(alp) ssig1 = sbet1, csig1 = calp1 * cbet1, ssig2 = sbet2, csig2 = calp2 * cbet2; // sig12 = sig2 - sig1 sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2), csig1 * csig2 + ssig1 * ssig2); { real dummy; Lengths(_n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, outmask | DISTANCE | REDUCEDLENGTH, s12x, m12x, dummy, M12, M21, Ca); } // Add the check for sig12 since zero length geodesics might yield m12 < // 0. Test case was // // echo 20.001 0 20.001 0 | GeodSolve -i // // In fact, we will have sig12 > pi/2 for meridional geodesic which is // not a shortest path. if (sig12 < 1 || m12x >= 0) { // Need at least 2, to handle 90 0 90 180 if (sig12 < 3 * tiny_) sig12 = m12x = s12x = 0; m12x *= _b; s12x *= _b; a12 = sig12 / Math::degree(); } else // m12 < 0, i.e., prolate and too close to anti-podal meridian = false; } // somg12 > 1 marks that it needs to be calculated real omg12 = 0, somg12 = 2, comg12 = 0; if (!meridian && sbet1 == 0 && // and sbet2 == 0 (_f <= 0 || lon12s >= _f * 180)) { // Geodesic runs along equator calp1 = calp2 = 0; salp1 = salp2 = 1; s12x = _a * lam12; sig12 = omg12 = lam12 / _f1; m12x = _b * sin(sig12); if (outmask & GEODESICSCALE) M12 = M21 = cos(sig12); a12 = lon12 / _f1; } else if (!meridian) { // Now point1 and point2 belong within a hemisphere bounded by a // meridian and geodesic is neither meridional or equatorial. // Figure a starting point for Newton's method real dnm; sig12 = InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2, lam12, slam12, clam12, salp1, calp1, salp2, calp2, dnm, Ca); if (sig12 >= 0) { // Short lines (InverseStart sets salp2, calp2, dnm) s12x = sig12 * _b * dnm; m12x = Math::sq(dnm) * _b * sin(sig12 / dnm); if (outmask & GEODESICSCALE) M12 = M21 = cos(sig12 / dnm); a12 = sig12 / Math::degree(); omg12 = lam12 / (_f1 * dnm); } else { // Newton's method. This is a straightforward solution of f(alp1) = // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one // root in the interval (0, pi) and its derivative is positive at the // root. Thus f(alp) is positive for alp > alp1 and negative for alp < // alp1. During the course of the iteration, a range (alp1a, alp1b) is // maintained which brackets the root and with each evaluation of // f(alp) the range is shrunk, if possible. Newton's method is // restarted whenever the derivative of f is negative (because the new // value of alp1 is then further from the solution) or if the new // estimate of alp1 lies outside (0,pi); in this case, the new starting // guess is taken to be (alp1a + alp1b) / 2. // // initial values to suppress warnings (if loop is executed 0 times) real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, domg12 = 0; unsigned numit = 0; // Bracketing range real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1; for (bool tripn = false, tripb = false; numit < maxit2_ || GEOGRAPHICLIB_PANIC; ++numit) { // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16 // WGS84 and random input: mean = 2.85, sd = 0.60 real dv; real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, slam12, clam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps, domg12, numit < maxit1_, dv, Ca); // Reversed test to allow escape with NaNs if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break; // Update bracketing values if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b)) { salp1b = salp1; calp1b = calp1; } else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a)) { salp1a = salp1; calp1a = calp1; } if (numit < maxit1_ && dv > 0) { real dalp1 = -v/dv; real sdalp1 = sin(dalp1), cdalp1 = cos(dalp1), nsalp1 = salp1 * cdalp1 + calp1 * sdalp1; if (nsalp1 > 0 && abs(dalp1) < Math::pi()) { calp1 = calp1 * cdalp1 - salp1 * sdalp1; salp1 = nsalp1; Math::norm(salp1, calp1); // In some regimes we don't get quadratic convergence because // slope -> 0. So use convergence conditions based on epsilon // instead of sqrt(epsilon). tripn = abs(v) <= 16 * tol0_; continue; } } // Either dv was not positive or updated value was outside legal // range. Use the midpoint of the bracket as the next estimate. // This mechanism is not needed for the WGS84 ellipsoid, but it does // catch problems with more eccentric ellipsoids. Its efficacy is // such for the WGS84 test set with the starting guess set to alp1 = // 90deg: // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24 // WGS84 and random input: mean = 4.74, sd = 0.99 salp1 = (salp1a + salp1b)/2; calp1 = (calp1a + calp1b)/2; Math::norm(salp1, calp1); tripn = false; tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ || abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_); } { real dummy; // Ensure that the reduced length and geodesic scale are computed in // a "canonical" way, with the I2 integral. unsigned lengthmask = outmask | (outmask & (REDUCEDLENGTH | GEODESICSCALE) ? DISTANCE : NONE); Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, lengthmask, s12x, m12x, dummy, M12, M21, Ca); } m12x *= _b; s12x *= _b; a12 = sig12 / Math::degree(); if (outmask & AREA) { // omg12 = lam12 - domg12 real sdomg12 = sin(domg12), cdomg12 = cos(domg12); somg12 = slam12 * cdomg12 - clam12 * sdomg12; comg12 = clam12 * cdomg12 + slam12 * sdomg12; } } } if (outmask & DISTANCE) s12 = 0 + s12x; // Convert -0 to 0 if (outmask & REDUCEDLENGTH) m12 = 0 + m12x; // Convert -0 to 0 if (outmask & AREA) { real // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) salp0 = salp1 * cbet1, calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0 real alp12; if (calp0 != 0 && salp0 != 0) { real // From Lambda12: tan(bet) = tan(sig) * cos(alp) ssig1 = sbet1, csig1 = calp1 * cbet1, ssig2 = sbet2, csig2 = calp2 * cbet2, k2 = Math::sq(calp0) * _ep2, eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2), // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). A4 = Math::sq(_a) * calp0 * salp0 * _e2; Math::norm(ssig1, csig1); Math::norm(ssig2, csig2); C4f(eps, Ca); real B41 = SinCosSeries(false, ssig1, csig1, Ca, nC4_), B42 = SinCosSeries(false, ssig2, csig2, Ca, nC4_); S12 = A4 * (B42 - B41); } else // Avoid problems with indeterminate sig1, sig2 on equator S12 = 0; if (!meridian && somg12 > 1) { somg12 = sin(omg12); comg12 = cos(omg12); } if (!meridian && // omg12 < 3/4 * pi comg12 > -real(0.7071) && // Long difference not too big sbet2 - sbet1 < real(1.75)) { // Lat difference not too big // Use tan(Gamma/2) = tan(omg12/2) // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2)) // with tan(x/2) = sin(x)/(1+cos(x)) real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2; alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ), domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) ); } else { // alp12 = alp2 - alp1, used in atan2 so no need to normalize real salp12 = salp2 * calp1 - calp2 * salp1, calp12 = calp2 * calp1 + salp2 * salp1; // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz // salp12 = -0 and alp12 = -180. However this depends on the sign // being attached to 0 correctly. The following ensures the correct // behavior. if (salp12 == 0 && calp12 < 0) { salp12 = tiny_ * calp1; calp12 = -1; } alp12 = atan2(salp12, calp12); } S12 += _c2 * alp12; S12 *= swapp * lonsign * latsign; // Convert -0 to 0 S12 += 0; } // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. if (swapp < 0) { swap(salp1, salp2); swap(calp1, calp2); if (outmask & GEODESICSCALE) swap(M12, M21); } salp1 *= swapp * lonsign; calp1 *= swapp * latsign; salp2 *= swapp * lonsign; calp2 *= swapp * latsign; // Returned value in [0, 180] return a12; } Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2, unsigned outmask, real& s12, real& azi1, real& azi2, real& m12, real& M12, real& M21, real& S12) const { outmask &= OUT_MASK; real salp1, calp1, salp2, calp2, a12 = GenInverse(lat1, lon1, lat2, lon2, outmask, s12, salp1, calp1, salp2, calp2, m12, M12, M21, S12); if (outmask & AZIMUTH) { azi1 = Math::atan2d(salp1, calp1); azi2 = Math::atan2d(salp2, calp2); } return a12; } GeodesicLine Geodesic::InverseLine(real lat1, real lon1, real lat2, real lon2, unsigned caps) const { real t, salp1, calp1, salp2, calp2, a12 = GenInverse(lat1, lon1, lat2, lon2, // No need to specify AZIMUTH here 0u, t, salp1, calp1, salp2, calp2, t, t, t, t), azi1 = Math::atan2d(salp1, calp1); // Ensure that a12 can be converted to a distance if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE; return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1, caps, true, a12); } void Geodesic::Lengths(real eps, real sig12, real ssig1, real csig1, real dn1, real ssig2, real csig2, real dn2, real cbet1, real cbet2, unsigned outmask, real& s12b, real& m12b, real& m0, real& M12, real& M21, // Scratch area of the right size real Ca[]) const { // Return m12b = (reduced length)/_b; also calculate s12b = distance/_b, // and m0 = coefficient of secular term in expression for reduced length. outmask &= OUT_MASK; // outmask & DISTANCE: set s12b // outmask & REDUCEDLENGTH: set m12b & m0 // outmask & GEODESICSCALE: set M12 & M21 real m0x = 0, J12 = 0, A1 = 0, A2 = 0; real Cb[nC2_ + 1]; if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) { A1 = A1m1f(eps); C1f(eps, Ca); if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) { A2 = A2m1f(eps); C2f(eps, Cb); m0x = A1 - A2; A2 = 1 + A2; } A1 = 1 + A1; } if (outmask & DISTANCE) { real B1 = SinCosSeries(true, ssig2, csig2, Ca, nC1_) - SinCosSeries(true, ssig1, csig1, Ca, nC1_); // Missing a factor of _b s12b = A1 * (sig12 + B1); if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) { real B2 = SinCosSeries(true, ssig2, csig2, Cb, nC2_) - SinCosSeries(true, ssig1, csig1, Cb, nC2_); J12 = m0x * sig12 + (A1 * B1 - A2 * B2); } } else if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) { // Assume here that nC1_ >= nC2_ for (int l = 1; l <= nC2_; ++l) Cb[l] = A1 * Ca[l] - A2 * Cb[l]; J12 = m0x * sig12 + (SinCosSeries(true, ssig2, csig2, Cb, nC2_) - SinCosSeries(true, ssig1, csig1, Cb, nC2_)); } if (outmask & REDUCEDLENGTH) { m0 = m0x; // Missing a factor of _b. // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure // accurate cancellation in the case of coincident points. m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) - csig1 * csig2 * J12; } if (outmask & GEODESICSCALE) { real csig12 = csig1 * csig2 + ssig1 * ssig2; real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2); M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1; M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2; } } Math::real Geodesic::Astroid(real x, real y) { // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k. // This solution is adapted from Geocentric::Reverse. real k; real p = Math::sq(x), q = Math::sq(y), r = (p + q - 1) / 6; if ( !(q == 0 && r <= 0) ) { real // Avoid possible division by zero when r = 0 by multiplying equations // for s and t by r^3 and r, resp. S = p * q / 4, // S = r^3 * s r2 = Math::sq(r), r3 = r * r2, // The discriminant of the quadratic equation for T3. This is zero on // the evolute curve p^(1/3)+q^(1/3) = 1 disc = S * (S + 2 * r3); real u = r; if (disc >= 0) { real T3 = S + r3; // Pick the sign on the sqrt to maximize abs(T3). This minimizes loss // of precision due to cancellation. The result is unchanged because // of the way the T is used in definition of u. T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3 // N.B. cbrt always returns the real root. cbrt(-8) = -2. real T = Math::cbrt(T3); // T = r * t // T can be zero; but then r2 / T -> 0. u += T + (T != 0 ? r2 / T : 0); } else { // T is complex, but the way u is defined the result is real. real ang = atan2(sqrt(-disc), -(S + r3)); // There are three possible cube roots. We choose the root which // avoids cancellation. Note that disc < 0 implies that r < 0. u += 2 * r * cos(ang / 3); } real v = sqrt(Math::sq(u) + q), // guaranteed positive // Avoid loss of accuracy when u < 0. uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive w = (uv - q) / (2 * v); // positive? // Rearrange expression for k to avoid loss of accuracy due to // subtraction. Division by 0 not possible because uv > 0, w >= 0. k = uv / (sqrt(uv + Math::sq(w)) + w); // guaranteed positive } else { // q == 0 && r <= 0 // y = 0 with |x| <= 1. Handle this case directly. // for y small, positive root is k = abs(y)/sqrt(1-x^2) k = 0; } return k; } Math::real Geodesic::InverseStart(real sbet1, real cbet1, real dn1, real sbet2, real cbet2, real dn2, real lam12, real slam12, real clam12, real& salp1, real& calp1, // Only updated if return val >= 0 real& salp2, real& calp2, // Only updated for short lines real& dnm, // Scratch area of the right size real Ca[]) const { // Return a starting point for Newton's method in salp1 and calp1 (function // value is -1). If Newton's method doesn't need to be used, return also // salp2 and calp2 and function value is sig12. real sig12 = -1, // Return value // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] sbet12 = sbet2 * cbet1 - cbet2 * sbet1, cbet12 = cbet2 * cbet1 + sbet2 * sbet1; real sbet12a = sbet2 * cbet1 + cbet2 * sbet1; bool shortline = cbet12 >= 0 && sbet12 < real(0.5) && cbet2 * lam12 < real(0.5); real somg12, comg12; if (shortline) { real sbetm2 = Math::sq(sbet1 + sbet2); // sin((bet1+bet2)/2)^2 // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2); dnm = sqrt(1 + _ep2 * sbetm2); real omg12 = lam12 / (_f1 * dnm); somg12 = sin(omg12); comg12 = cos(omg12); } else { somg12 = slam12; comg12 = clam12; } salp1 = cbet2 * somg12; calp1 = comg12 >= 0 ? sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) : sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12); real ssig12 = Math::hypot(salp1, calp1), csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12; if (shortline && ssig12 < _etol2) { // really short lines salp2 = cbet1 * somg12; calp2 = sbet12 - cbet1 * sbet2 * (comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12); Math::norm(salp2, calp2); // Set return value sig12 = atan2(ssig12, csig12); } else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric csig12 >= 0 || ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) { // Nothing to do, zeroth order spherical approximation is OK } else { // Scale lam12 and bet2 to x, y coordinate system where antipodal point // is at origin and singular point is at y = 0, x = -1. real y, lamscale, betscale; // Volatile declaration needed to fix inverse case // 56.320923501171 0 -56.320923501171 179.664747671772880215 // which otherwise fails with g++ 4.4.4 x86 -O3 GEOGRAPHICLIB_VOLATILE real x; real lam12x = atan2(-slam12, -clam12); // lam12 - pi if (_f >= 0) { // In fact f == 0 does not get here // x = dlong, y = dlat { real k2 = Math::sq(sbet1) * _ep2, eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2); lamscale = _f * cbet1 * A3f(eps) * Math::pi(); } betscale = lamscale * cbet1; x = lam12x / lamscale; y = sbet12a / betscale; } else { // _f < 0 // x = dlat, y = dlong real cbet12a = cbet2 * cbet1 - sbet2 * sbet1, bet12a = atan2(sbet12a, cbet12a); real m12b, m0, dummy; // In the case of lon12 = 180, this repeats a calculation made in // Inverse. Lengths(_n, Math::pi() + bet12a, sbet1, -cbet1, dn1, sbet2, cbet2, dn2, cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy, Ca); x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi()); betscale = x < -real(0.01) ? sbet12a / x : -_f * Math::sq(cbet1) * Math::pi(); lamscale = betscale / cbet1; y = lam12x / lamscale; } if (y > -tol1_ && x > -1 - xthresh_) { // strip near cut // Need real(x) here to cast away the volatility of x for min/max if (_f >= 0) { salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1)); } else { calp1 = max(real(x > -tol1_ ? 0 : -1), real(x)); salp1 = sqrt(1 - Math::sq(calp1)); } } else { // Estimate alp1, by solving the astroid problem. // // Could estimate alpha1 = theta + pi/2, directly, i.e., // calp1 = y/k; salp1 = -x/(1+k); for _f >= 0 // calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check) // // However, it's better to estimate omg12 from astroid and use // spherical formula to compute alp1. This reduces the mean number of // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12 // (min 0 max 5). The changes in the number of iterations are as // follows: // // change percent // 1 5 // 0 78 // -1 16 // -2 0.6 // -3 0.04 // -4 0.002 // // The histogram of iterations is (m = number of iterations estimating // alp1 directly, n = number of iterations estimating via omg12, total // number of trials = 148605): // // iter m n // 0 148 186 // 1 13046 13845 // 2 93315 102225 // 3 36189 32341 // 4 5396 7 // 5 455 1 // 6 56 0 // // Because omg12 is near pi, estimate work with omg12a = pi - omg12 real k = Astroid(x, y); real omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k ); somg12 = sin(omg12a); comg12 = -cos(omg12a); // Update spherical estimate of alp1 using omg12 instead of lam12 salp1 = cbet2 * somg12; calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12); } } // Sanity check on starting guess. Backwards check allows NaN through. if (!(salp1 <= 0)) Math::norm(salp1, calp1); else { salp1 = 1; calp1 = 0; } return sig12; } Math::real Geodesic::Lambda12(real sbet1, real cbet1, real dn1, real sbet2, real cbet2, real dn2, real salp1, real calp1, real slam120, real clam120, real& salp2, real& calp2, real& sig12, real& ssig1, real& csig1, real& ssig2, real& csig2, real& eps, real& domg12, bool diffp, real& dlam12, // Scratch area of the right size real Ca[]) const { if (sbet1 == 0 && calp1 == 0) // Break degeneracy of equatorial line. This case has already been // handled. calp1 = -tiny_; real // sin(alp1) * cos(bet1) = sin(alp0) salp0 = salp1 * cbet1, calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0 real somg1, comg1, somg2, comg2, somg12, comg12, lam12; // tan(bet1) = tan(sig1) * cos(alp1) // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) ssig1 = sbet1; somg1 = salp0 * sbet1; csig1 = comg1 = calp1 * cbet1; Math::norm(ssig1, csig1); // Math::norm(somg1, comg1); -- don't need to normalize! // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful // about this case, since this can yield singularities in the Newton // iteration. // sin(alp2) * cos(bet2) = sin(alp0) salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1; // calp2 = sqrt(1 - sq(salp2)) // = sqrt(sq(calp0) - sq(sbet2)) / cbet2 // and subst for calp0 and rearrange to give (choose positive sqrt // to give alp2 in [0, pi/2]). calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ? sqrt(Math::sq(calp1 * cbet1) + (cbet1 < -sbet1 ? (cbet2 - cbet1) * (cbet1 + cbet2) : (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 : abs(calp1); // tan(bet2) = tan(sig2) * cos(alp2) // tan(omg2) = sin(alp0) * tan(sig2). ssig2 = sbet2; somg2 = salp0 * sbet2; csig2 = comg2 = calp2 * cbet2; Math::norm(ssig2, csig2); // Math::norm(somg2, comg2); -- don't need to normalize! // sig12 = sig2 - sig1, limit to [0, pi] sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2), csig1 * csig2 + ssig1 * ssig2); // omg12 = omg2 - omg1, limit to [0, pi] somg12 = max(real(0), comg1 * somg2 - somg1 * comg2); comg12 = comg1 * comg2 + somg1 * somg2; // eta = omg12 - lam120 real eta = atan2(somg12 * clam120 - comg12 * slam120, comg12 * clam120 + somg12 * slam120); real B312; real k2 = Math::sq(calp0) * _ep2; eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2); C3f(eps, Ca); B312 = (SinCosSeries(true, ssig2, csig2, Ca, nC3_-1) - SinCosSeries(true, ssig1, csig1, Ca, nC3_-1)); domg12 = -_f * A3f(eps) * salp0 * (sig12 + B312); lam12 = eta + domg12; if (diffp) { if (calp2 == 0) dlam12 = - 2 * _f1 * dn1 / sbet1; else { real dummy; Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, REDUCEDLENGTH, dummy, dlam12, dummy, dummy, dummy, Ca); dlam12 *= _f1 / (calp2 * cbet2); } } return lam12; } Math::real Geodesic::A3f(real eps) const { // Evaluate A3 return Math::polyval(nA3_ - 1, _A3x, eps); } void Geodesic::C3f(real eps, real c[]) const { // Evaluate C3 coeffs // Elements c[1] thru c[nC3_ - 1] are set real mult = 1; int o = 0; for (int l = 1; l < nC3_; ++l) { // l is index of C3[l] int m = nC3_ - l - 1; // order of polynomial in eps mult *= eps; c[l] = mult * Math::polyval(m, _C3x + o, eps); o += m + 1; } // Post condition: o == nC3x_ } void Geodesic::C4f(real eps, real c[]) const { // Evaluate C4 coeffs // Elements c[0] thru c[nC4_ - 1] are set real mult = 1; int o = 0; for (int l = 0; l < nC4_; ++l) { // l is index of C4[l] int m = nC4_ - l - 1; // order of polynomial in eps c[l] = mult * Math::polyval(m, _C4x + o, eps); o += m + 1; mult *= eps; } // Post condition: o == nC4x_ } // The static const coefficient arrays in the following functions are // generated by Maxima and give the coefficients of the Taylor expansions for // the geodesics. The convention on the order of these coefficients is as // follows: // // ascending order in the trigonometric expansion, // then powers of eps in descending order, // finally powers of n in descending order. // // (For some expansions, only a subset of levels occur.) For each polynomial // of order n at the lowest level, the (n+1) coefficients of the polynomial // are followed by a divisor which is applied to the whole polynomial. In // this way, the coefficients are expressible with no round off error. The // sizes of the coefficient arrays are: // // A1m1f, A2m1f = floor(N/2) + 2 // C1f, C1pf, C2f, A3coeff = (N^2 + 7*N - 2*floor(N/2)) / 4 // C3coeff = (N - 1) * (N^2 + 7*N - 2*floor(N/2)) / 8 // C4coeff = N * (N + 1) * (N + 5) / 6 // // where N = GEOGRAPHICLIB_GEODESIC_ORDER // = nA1 = nA2 = nC1 = nC1p = nA3 = nC4 // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 Math::real Geodesic::A1m1f(real eps) { // Generated by Maxima on 2015-05-05 18:08:12-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1 static const real coeff[] = { // (1-eps)*A1-1, polynomial in eps2 of order 1 1, 0, 4, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2 static const real coeff[] = { // (1-eps)*A1-1, polynomial in eps2 of order 2 1, 16, 0, 64, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3 static const real coeff[] = { // (1-eps)*A1-1, polynomial in eps2 of order 3 1, 4, 64, 0, 256, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4 static const real coeff[] = { // (1-eps)*A1-1, polynomial in eps2 of order 4 25, 64, 256, 4096, 0, 16384, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA1_/2 + 2, "Coefficient array size mismatch in A1m1f"); int m = nA1_/2; real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1]; return (t + eps) / (1 - eps); } // The coefficients C1[l] in the Fourier expansion of B1 void Geodesic::C1f(real eps, real c[]) { // Generated by Maxima on 2015-05-05 18:08:12-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 1 3, -8, 16, // C1[2]/eps^2, polynomial in eps2 of order 0 -1, 16, // C1[3]/eps^3, polynomial in eps2 of order 0 -1, 48, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 1 3, -8, 16, // C1[2]/eps^2, polynomial in eps2 of order 1 1, -2, 32, // C1[3]/eps^3, polynomial in eps2 of order 0 -1, 48, // C1[4]/eps^4, polynomial in eps2 of order 0 -5, 512, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 2 -1, 6, -16, 32, // C1[2]/eps^2, polynomial in eps2 of order 1 1, -2, 32, // C1[3]/eps^3, polynomial in eps2 of order 1 9, -16, 768, // C1[4]/eps^4, polynomial in eps2 of order 0 -5, 512, // C1[5]/eps^5, polynomial in eps2 of order 0 -7, 1280, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 2 -1, 6, -16, 32, // C1[2]/eps^2, polynomial in eps2 of order 2 -9, 64, -128, 2048, // C1[3]/eps^3, polynomial in eps2 of order 1 9, -16, 768, // C1[4]/eps^4, polynomial in eps2 of order 1 3, -5, 512, // C1[5]/eps^5, polynomial in eps2 of order 0 -7, 1280, // C1[6]/eps^6, polynomial in eps2 of order 0 -7, 2048, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 3 19, -64, 384, -1024, 2048, // C1[2]/eps^2, polynomial in eps2 of order 2 -9, 64, -128, 2048, // C1[3]/eps^3, polynomial in eps2 of order 2 -9, 72, -128, 6144, // C1[4]/eps^4, polynomial in eps2 of order 1 3, -5, 512, // C1[5]/eps^5, polynomial in eps2 of order 1 35, -56, 10240, // C1[6]/eps^6, polynomial in eps2 of order 0 -7, 2048, // C1[7]/eps^7, polynomial in eps2 of order 0 -33, 14336, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 3 19, -64, 384, -1024, 2048, // C1[2]/eps^2, polynomial in eps2 of order 3 7, -18, 128, -256, 4096, // C1[3]/eps^3, polynomial in eps2 of order 2 -9, 72, -128, 6144, // C1[4]/eps^4, polynomial in eps2 of order 2 -11, 96, -160, 16384, // C1[5]/eps^5, polynomial in eps2 of order 1 35, -56, 10240, // C1[6]/eps^6, polynomial in eps2 of order 1 9, -14, 4096, // C1[7]/eps^7, polynomial in eps2 of order 0 -33, 14336, // C1[8]/eps^8, polynomial in eps2 of order 0 -429, 262144, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == (nC1_*nC1_ + 7*nC1_ - 2*(nC1_/2)) / 4, "Coefficient array size mismatch in C1f"); real eps2 = Math::sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC1_; ++l) { // l is index of C1p[l] int m = (nC1_ - l) / 2; // order of polynomial in eps^2 c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } // Post condition: o == sizeof(coeff) / sizeof(real) } // The coefficients C1p[l] in the Fourier expansion of B1p void Geodesic::C1pf(real eps, real c[]) { // Generated by Maxima on 2015-05-05 18:08:12-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 1 -9, 16, 32, // C1p[2]/eps^2, polynomial in eps2 of order 0 5, 16, // C1p[3]/eps^3, polynomial in eps2 of order 0 29, 96, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 1 -9, 16, 32, // C1p[2]/eps^2, polynomial in eps2 of order 1 -37, 30, 96, // C1p[3]/eps^3, polynomial in eps2 of order 0 29, 96, // C1p[4]/eps^4, polynomial in eps2 of order 0 539, 1536, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 2 205, -432, 768, 1536, // C1p[2]/eps^2, polynomial in eps2 of order 1 -37, 30, 96, // C1p[3]/eps^3, polynomial in eps2 of order 1 -225, 116, 384, // C1p[4]/eps^4, polynomial in eps2 of order 0 539, 1536, // C1p[5]/eps^5, polynomial in eps2 of order 0 3467, 7680, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 2 205, -432, 768, 1536, // C1p[2]/eps^2, polynomial in eps2 of order 2 4005, -4736, 3840, 12288, // C1p[3]/eps^3, polynomial in eps2 of order 1 -225, 116, 384, // C1p[4]/eps^4, polynomial in eps2 of order 1 -7173, 2695, 7680, // C1p[5]/eps^5, polynomial in eps2 of order 0 3467, 7680, // C1p[6]/eps^6, polynomial in eps2 of order 0 38081, 61440, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 3 -4879, 9840, -20736, 36864, 73728, // C1p[2]/eps^2, polynomial in eps2 of order 2 4005, -4736, 3840, 12288, // C1p[3]/eps^3, polynomial in eps2 of order 2 8703, -7200, 3712, 12288, // C1p[4]/eps^4, polynomial in eps2 of order 1 -7173, 2695, 7680, // C1p[5]/eps^5, polynomial in eps2 of order 1 -141115, 41604, 92160, // C1p[6]/eps^6, polynomial in eps2 of order 0 38081, 61440, // C1p[7]/eps^7, polynomial in eps2 of order 0 459485, 516096, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 3 -4879, 9840, -20736, 36864, 73728, // C1p[2]/eps^2, polynomial in eps2 of order 3 -86171, 120150, -142080, 115200, 368640, // C1p[3]/eps^3, polynomial in eps2 of order 2 8703, -7200, 3712, 12288, // C1p[4]/eps^4, polynomial in eps2 of order 2 1082857, -688608, 258720, 737280, // C1p[5]/eps^5, polynomial in eps2 of order 1 -141115, 41604, 92160, // C1p[6]/eps^6, polynomial in eps2 of order 1 -2200311, 533134, 860160, // C1p[7]/eps^7, polynomial in eps2 of order 0 459485, 516096, // C1p[8]/eps^8, polynomial in eps2 of order 0 109167851, 82575360, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == (nC1p_*nC1p_ + 7*nC1p_ - 2*(nC1p_/2)) / 4, "Coefficient array size mismatch in C1pf"); real eps2 = Math::sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC1p_; ++l) { // l is index of C1p[l] int m = (nC1p_ - l) / 2; // order of polynomial in eps^2 c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } // Post condition: o == sizeof(coeff) / sizeof(real) } // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 Math::real Geodesic::A2m1f(real eps) { // Generated by Maxima on 2015-05-29 08:09:47-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1 static const real coeff[] = { // (eps+1)*A2-1, polynomial in eps2 of order 1 -3, 0, 4, }; // count = 3 #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2 static const real coeff[] = { // (eps+1)*A2-1, polynomial in eps2 of order 2 -7, -48, 0, 64, }; // count = 4 #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3 static const real coeff[] = { // (eps+1)*A2-1, polynomial in eps2 of order 3 -11, -28, -192, 0, 256, }; // count = 5 #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4 static const real coeff[] = { // (eps+1)*A2-1, polynomial in eps2 of order 4 -375, -704, -1792, -12288, 0, 16384, }; // count = 6 #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA2_/2 + 2, "Coefficient array size mismatch in A2m1f"); int m = nA2_/2; real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1]; return (t - eps) / (1 + eps); } // The coefficients C2[l] in the Fourier expansion of B2 void Geodesic::C2f(real eps, real c[]) { // Generated by Maxima on 2015-05-05 18:08:12-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 1 1, 8, 16, // C2[2]/eps^2, polynomial in eps2 of order 0 3, 16, // C2[3]/eps^3, polynomial in eps2 of order 0 5, 48, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 1 1, 8, 16, // C2[2]/eps^2, polynomial in eps2 of order 1 1, 6, 32, // C2[3]/eps^3, polynomial in eps2 of order 0 5, 48, // C2[4]/eps^4, polynomial in eps2 of order 0 35, 512, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 2 1, 2, 16, 32, // C2[2]/eps^2, polynomial in eps2 of order 1 1, 6, 32, // C2[3]/eps^3, polynomial in eps2 of order 1 15, 80, 768, // C2[4]/eps^4, polynomial in eps2 of order 0 35, 512, // C2[5]/eps^5, polynomial in eps2 of order 0 63, 1280, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 2 1, 2, 16, 32, // C2[2]/eps^2, polynomial in eps2 of order 2 35, 64, 384, 2048, // C2[3]/eps^3, polynomial in eps2 of order 1 15, 80, 768, // C2[4]/eps^4, polynomial in eps2 of order 1 7, 35, 512, // C2[5]/eps^5, polynomial in eps2 of order 0 63, 1280, // C2[6]/eps^6, polynomial in eps2 of order 0 77, 2048, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 3 41, 64, 128, 1024, 2048, // C2[2]/eps^2, polynomial in eps2 of order 2 35, 64, 384, 2048, // C2[3]/eps^3, polynomial in eps2 of order 2 69, 120, 640, 6144, // C2[4]/eps^4, polynomial in eps2 of order 1 7, 35, 512, // C2[5]/eps^5, polynomial in eps2 of order 1 105, 504, 10240, // C2[6]/eps^6, polynomial in eps2 of order 0 77, 2048, // C2[7]/eps^7, polynomial in eps2 of order 0 429, 14336, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 3 41, 64, 128, 1024, 2048, // C2[2]/eps^2, polynomial in eps2 of order 3 47, 70, 128, 768, 4096, // C2[3]/eps^3, polynomial in eps2 of order 2 69, 120, 640, 6144, // C2[4]/eps^4, polynomial in eps2 of order 2 133, 224, 1120, 16384, // C2[5]/eps^5, polynomial in eps2 of order 1 105, 504, 10240, // C2[6]/eps^6, polynomial in eps2 of order 1 33, 154, 4096, // C2[7]/eps^7, polynomial in eps2 of order 0 429, 14336, // C2[8]/eps^8, polynomial in eps2 of order 0 6435, 262144, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == (nC2_*nC2_ + 7*nC2_ - 2*(nC2_/2)) / 4, "Coefficient array size mismatch in C2f"); real eps2 = Math::sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC2_; ++l) { // l is index of C2[l] int m = (nC2_ - l) / 2; // order of polynomial in eps^2 c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } // Post condition: o == sizeof(coeff) / sizeof(real) } // The scale factor A3 = mean value of (d/dsigma)I3 void Geodesic::A3coeff() { // Generated by Maxima on 2015-05-05 18:08:13-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // A3, coeff of eps^2, polynomial in n of order 0 -1, 4, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // A3, coeff of eps^3, polynomial in n of order 0 -1, 16, // A3, coeff of eps^2, polynomial in n of order 1 -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // A3, coeff of eps^4, polynomial in n of order 0 -3, 64, // A3, coeff of eps^3, polynomial in n of order 1 -3, -1, 16, // A3, coeff of eps^2, polynomial in n of order 2 3, -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // A3, coeff of eps^5, polynomial in n of order 0 -3, 128, // A3, coeff of eps^4, polynomial in n of order 1 -2, -3, 64, // A3, coeff of eps^3, polynomial in n of order 2 -1, -3, -1, 16, // A3, coeff of eps^2, polynomial in n of order 2 3, -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // A3, coeff of eps^6, polynomial in n of order 0 -5, 256, // A3, coeff of eps^5, polynomial in n of order 1 -5, -3, 128, // A3, coeff of eps^4, polynomial in n of order 2 -10, -2, -3, 64, // A3, coeff of eps^3, polynomial in n of order 3 5, -1, -3, -1, 16, // A3, coeff of eps^2, polynomial in n of order 2 3, -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // A3, coeff of eps^7, polynomial in n of order 0 -25, 2048, // A3, coeff of eps^6, polynomial in n of order 1 -15, -20, 1024, // A3, coeff of eps^5, polynomial in n of order 2 -5, -10, -6, 256, // A3, coeff of eps^4, polynomial in n of order 3 -5, -20, -4, -6, 128, // A3, coeff of eps^3, polynomial in n of order 3 5, -1, -3, -1, 16, // A3, coeff of eps^2, polynomial in n of order 2 3, -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == (nA3_*nA3_ + 7*nA3_ - 2*(nA3_/2)) / 4, "Coefficient array size mismatch in A3f"); int o = 0, k = 0; for (int j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j int m = min(nA3_ - j - 1, j); // order of polynomial in n _A3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1]; o += m + 2; } // Post condition: o == sizeof(coeff) / sizeof(real) && k == nA3x_ } // The coefficients C3[l] in the Fourier expansion of B3 void Geodesic::C3coeff() { // Generated by Maxima on 2015-05-05 18:08:13-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // C3[1], coeff of eps^2, polynomial in n of order 0 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^2, polynomial in n of order 0 1, 16, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // C3[1], coeff of eps^3, polynomial in n of order 0 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 1 // This is a case where a leading 0 term has been inserted to maintain the // pattern in the orders of the polynomials. 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^3, polynomial in n of order 0 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 1 -3, 2, 32, // C3[3], coeff of eps^3, polynomial in n of order 0 5, 192, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // C3[1], coeff of eps^4, polynomial in n of order 0 5, 128, // C3[1], coeff of eps^3, polynomial in n of order 1 3, 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 2 -1, 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^4, polynomial in n of order 0 3, 128, // C3[2], coeff of eps^3, polynomial in n of order 1 -2, 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 2 1, -3, 2, 32, // C3[3], coeff of eps^4, polynomial in n of order 0 3, 128, // C3[3], coeff of eps^3, polynomial in n of order 1 -9, 5, 192, // C3[4], coeff of eps^4, polynomial in n of order 0 7, 512, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // C3[1], coeff of eps^5, polynomial in n of order 0 3, 128, // C3[1], coeff of eps^4, polynomial in n of order 1 2, 5, 128, // C3[1], coeff of eps^3, polynomial in n of order 2 -1, 3, 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 2 -1, 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^5, polynomial in n of order 0 5, 256, // C3[2], coeff of eps^4, polynomial in n of order 1 1, 3, 128, // C3[2], coeff of eps^3, polynomial in n of order 2 -3, -2, 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 2 1, -3, 2, 32, // C3[3], coeff of eps^5, polynomial in n of order 0 7, 512, // C3[3], coeff of eps^4, polynomial in n of order 1 -10, 9, 384, // C3[3], coeff of eps^3, polynomial in n of order 2 5, -9, 5, 192, // C3[4], coeff of eps^5, polynomial in n of order 0 7, 512, // C3[4], coeff of eps^4, polynomial in n of order 1 -14, 7, 512, // C3[5], coeff of eps^5, polynomial in n of order 0 21, 2560, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // C3[1], coeff of eps^6, polynomial in n of order 0 21, 1024, // C3[1], coeff of eps^5, polynomial in n of order 1 11, 12, 512, // C3[1], coeff of eps^4, polynomial in n of order 2 2, 2, 5, 128, // C3[1], coeff of eps^3, polynomial in n of order 3 -5, -1, 3, 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 2 -1, 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^6, polynomial in n of order 0 27, 2048, // C3[2], coeff of eps^5, polynomial in n of order 1 1, 5, 256, // C3[2], coeff of eps^4, polynomial in n of order 2 -9, 2, 6, 256, // C3[2], coeff of eps^3, polynomial in n of order 3 2, -3, -2, 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 2 1, -3, 2, 32, // C3[3], coeff of eps^6, polynomial in n of order 0 3, 256, // C3[3], coeff of eps^5, polynomial in n of order 1 -4, 21, 1536, // C3[3], coeff of eps^4, polynomial in n of order 2 -6, -10, 9, 384, // C3[3], coeff of eps^3, polynomial in n of order 3 -1, 5, -9, 5, 192, // C3[4], coeff of eps^6, polynomial in n of order 0 9, 1024, // C3[4], coeff of eps^5, polynomial in n of order 1 -10, 7, 512, // C3[4], coeff of eps^4, polynomial in n of order 2 10, -14, 7, 512, // C3[5], coeff of eps^6, polynomial in n of order 0 9, 1024, // C3[5], coeff of eps^5, polynomial in n of order 1 -45, 21, 2560, // C3[6], coeff of eps^6, polynomial in n of order 0 11, 2048, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // C3[1], coeff of eps^7, polynomial in n of order 0 243, 16384, // C3[1], coeff of eps^6, polynomial in n of order 1 10, 21, 1024, // C3[1], coeff of eps^5, polynomial in n of order 2 3, 11, 12, 512, // C3[1], coeff of eps^4, polynomial in n of order 3 -2, 2, 2, 5, 128, // C3[1], coeff of eps^3, polynomial in n of order 3 -5, -1, 3, 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 2 -1, 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^7, polynomial in n of order 0 187, 16384, // C3[2], coeff of eps^6, polynomial in n of order 1 69, 108, 8192, // C3[2], coeff of eps^5, polynomial in n of order 2 -2, 1, 5, 256, // C3[2], coeff of eps^4, polynomial in n of order 3 -6, -9, 2, 6, 256, // C3[2], coeff of eps^3, polynomial in n of order 3 2, -3, -2, 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 2 1, -3, 2, 32, // C3[3], coeff of eps^7, polynomial in n of order 0 139, 16384, // C3[3], coeff of eps^6, polynomial in n of order 1 -1, 12, 1024, // C3[3], coeff of eps^5, polynomial in n of order 2 -77, -8, 42, 3072, // C3[3], coeff of eps^4, polynomial in n of order 3 10, -6, -10, 9, 384, // C3[3], coeff of eps^3, polynomial in n of order 3 -1, 5, -9, 5, 192, // C3[4], coeff of eps^7, polynomial in n of order 0 127, 16384, // C3[4], coeff of eps^6, polynomial in n of order 1 -43, 72, 8192, // C3[4], coeff of eps^5, polynomial in n of order 2 -7, -40, 28, 2048, // C3[4], coeff of eps^4, polynomial in n of order 3 -7, 20, -28, 14, 1024, // C3[5], coeff of eps^7, polynomial in n of order 0 99, 16384, // C3[5], coeff of eps^6, polynomial in n of order 1 -15, 9, 1024, // C3[5], coeff of eps^5, polynomial in n of order 2 75, -90, 42, 5120, // C3[6], coeff of eps^7, polynomial in n of order 0 99, 16384, // C3[6], coeff of eps^6, polynomial in n of order 1 -99, 44, 8192, // C3[7], coeff of eps^7, polynomial in n of order 0 429, 114688, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == ((nC3_-1)*(nC3_*nC3_ + 7*nC3_ - 2*(nC3_/2)))/8, "Coefficient array size mismatch in C3coeff"); int o = 0, k = 0; for (int l = 1; l < nC3_; ++l) { // l is index of C3[l] for (int j = nC3_ - 1; j >= l; --j) { // coeff of eps^j int m = min(nC3_ - j - 1, j); // order of polynomial in n _C3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1]; o += m + 2; } } // Post condition: o == sizeof(coeff) / sizeof(real) && k == nC3x_ } void Geodesic::C4coeff() { // Generated by Maxima on 2015-05-05 18:08:13-04:00 #if GEOGRAPHICLIB_GEODESIC_ORDER == 3 static const real coeff[] = { // C4[0], coeff of eps^2, polynomial in n of order 0 -2, 105, // C4[0], coeff of eps^1, polynomial in n of order 1 16, -7, 35, // C4[0], coeff of eps^0, polynomial in n of order 2 8, -28, 70, 105, // C4[1], coeff of eps^2, polynomial in n of order 0 -2, 105, // C4[1], coeff of eps^1, polynomial in n of order 1 -16, 7, 315, // C4[2], coeff of eps^2, polynomial in n of order 0 4, 525, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4 static const real coeff[] = { // C4[0], coeff of eps^3, polynomial in n of order 0 11, 315, // C4[0], coeff of eps^2, polynomial in n of order 1 -32, -6, 315, // C4[0], coeff of eps^1, polynomial in n of order 2 -32, 48, -21, 105, // C4[0], coeff of eps^0, polynomial in n of order 3 4, 24, -84, 210, 315, // C4[1], coeff of eps^3, polynomial in n of order 0 -1, 105, // C4[1], coeff of eps^2, polynomial in n of order 1 64, -18, 945, // C4[1], coeff of eps^1, polynomial in n of order 2 32, -48, 21, 945, // C4[2], coeff of eps^3, polynomial in n of order 0 -8, 1575, // C4[2], coeff of eps^2, polynomial in n of order 1 -32, 12, 1575, // C4[3], coeff of eps^3, polynomial in n of order 0 8, 2205, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5 static const real coeff[] = { // C4[0], coeff of eps^4, polynomial in n of order 0 4, 1155, // C4[0], coeff of eps^3, polynomial in n of order 1 -368, 121, 3465, // C4[0], coeff of eps^2, polynomial in n of order 2 1088, -352, -66, 3465, // C4[0], coeff of eps^1, polynomial in n of order 3 48, -352, 528, -231, 1155, // C4[0], coeff of eps^0, polynomial in n of order 4 16, 44, 264, -924, 2310, 3465, // C4[1], coeff of eps^4, polynomial in n of order 0 4, 1155, // C4[1], coeff of eps^3, polynomial in n of order 1 80, -99, 10395, // C4[1], coeff of eps^2, polynomial in n of order 2 -896, 704, -198, 10395, // C4[1], coeff of eps^1, polynomial in n of order 3 -48, 352, -528, 231, 10395, // C4[2], coeff of eps^4, polynomial in n of order 0 -8, 1925, // C4[2], coeff of eps^3, polynomial in n of order 1 384, -88, 17325, // C4[2], coeff of eps^2, polynomial in n of order 2 320, -352, 132, 17325, // C4[3], coeff of eps^4, polynomial in n of order 0 -16, 8085, // C4[3], coeff of eps^3, polynomial in n of order 1 -256, 88, 24255, // C4[4], coeff of eps^4, polynomial in n of order 0 64, 31185, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6 static const real coeff[] = { // C4[0], coeff of eps^5, polynomial in n of order 0 97, 15015, // C4[0], coeff of eps^4, polynomial in n of order 1 1088, 156, 45045, // C4[0], coeff of eps^3, polynomial in n of order 2 -224, -4784, 1573, 45045, // C4[0], coeff of eps^2, polynomial in n of order 3 -10656, 14144, -4576, -858, 45045, // C4[0], coeff of eps^1, polynomial in n of order 4 64, 624, -4576, 6864, -3003, 15015, // C4[0], coeff of eps^0, polynomial in n of order 5 100, 208, 572, 3432, -12012, 30030, 45045, // C4[1], coeff of eps^5, polynomial in n of order 0 1, 9009, // C4[1], coeff of eps^4, polynomial in n of order 1 -2944, 468, 135135, // C4[1], coeff of eps^3, polynomial in n of order 2 5792, 1040, -1287, 135135, // C4[1], coeff of eps^2, polynomial in n of order 3 5952, -11648, 9152, -2574, 135135, // C4[1], coeff of eps^1, polynomial in n of order 4 -64, -624, 4576, -6864, 3003, 135135, // C4[2], coeff of eps^5, polynomial in n of order 0 8, 10725, // C4[2], coeff of eps^4, polynomial in n of order 1 1856, -936, 225225, // C4[2], coeff of eps^3, polynomial in n of order 2 -8448, 4992, -1144, 225225, // C4[2], coeff of eps^2, polynomial in n of order 3 -1440, 4160, -4576, 1716, 225225, // C4[3], coeff of eps^5, polynomial in n of order 0 -136, 63063, // C4[3], coeff of eps^4, polynomial in n of order 1 1024, -208, 105105, // C4[3], coeff of eps^3, polynomial in n of order 2 3584, -3328, 1144, 315315, // C4[4], coeff of eps^5, polynomial in n of order 0 -128, 135135, // C4[4], coeff of eps^4, polynomial in n of order 1 -2560, 832, 405405, // C4[5], coeff of eps^5, polynomial in n of order 0 128, 99099, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7 static const real coeff[] = { // C4[0], coeff of eps^6, polynomial in n of order 0 10, 9009, // C4[0], coeff of eps^5, polynomial in n of order 1 -464, 291, 45045, // C4[0], coeff of eps^4, polynomial in n of order 2 -4480, 1088, 156, 45045, // C4[0], coeff of eps^3, polynomial in n of order 3 10736, -224, -4784, 1573, 45045, // C4[0], coeff of eps^2, polynomial in n of order 4 1664, -10656, 14144, -4576, -858, 45045, // C4[0], coeff of eps^1, polynomial in n of order 5 16, 64, 624, -4576, 6864, -3003, 15015, // C4[0], coeff of eps^0, polynomial in n of order 6 56, 100, 208, 572, 3432, -12012, 30030, 45045, // C4[1], coeff of eps^6, polynomial in n of order 0 10, 9009, // C4[1], coeff of eps^5, polynomial in n of order 1 112, 15, 135135, // C4[1], coeff of eps^4, polynomial in n of order 2 3840, -2944, 468, 135135, // C4[1], coeff of eps^3, polynomial in n of order 3 -10704, 5792, 1040, -1287, 135135, // C4[1], coeff of eps^2, polynomial in n of order 4 -768, 5952, -11648, 9152, -2574, 135135, // C4[1], coeff of eps^1, polynomial in n of order 5 -16, -64, -624, 4576, -6864, 3003, 135135, // C4[2], coeff of eps^6, polynomial in n of order 0 -4, 25025, // C4[2], coeff of eps^5, polynomial in n of order 1 -1664, 168, 225225, // C4[2], coeff of eps^4, polynomial in n of order 2 1664, 1856, -936, 225225, // C4[2], coeff of eps^3, polynomial in n of order 3 6784, -8448, 4992, -1144, 225225, // C4[2], coeff of eps^2, polynomial in n of order 4 128, -1440, 4160, -4576, 1716, 225225, // C4[3], coeff of eps^6, polynomial in n of order 0 64, 315315, // C4[3], coeff of eps^5, polynomial in n of order 1 1792, -680, 315315, // C4[3], coeff of eps^4, polynomial in n of order 2 -2048, 1024, -208, 105105, // C4[3], coeff of eps^3, polynomial in n of order 3 -1792, 3584, -3328, 1144, 315315, // C4[4], coeff of eps^6, polynomial in n of order 0 -512, 405405, // C4[4], coeff of eps^5, polynomial in n of order 1 2048, -384, 405405, // C4[4], coeff of eps^4, polynomial in n of order 2 3072, -2560, 832, 405405, // C4[5], coeff of eps^6, polynomial in n of order 0 -256, 495495, // C4[5], coeff of eps^5, polynomial in n of order 1 -2048, 640, 495495, // C4[6], coeff of eps^6, polynomial in n of order 0 512, 585585, }; #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8 static const real coeff[] = { // C4[0], coeff of eps^7, polynomial in n of order 0 193, 85085, // C4[0], coeff of eps^6, polynomial in n of order 1 4192, 850, 765765, // C4[0], coeff of eps^5, polynomial in n of order 2 20960, -7888, 4947, 765765, // C4[0], coeff of eps^4, polynomial in n of order 3 12480, -76160, 18496, 2652, 765765, // C4[0], coeff of eps^3, polynomial in n of order 4 -154048, 182512, -3808, -81328, 26741, 765765, // C4[0], coeff of eps^2, polynomial in n of order 5 3232, 28288, -181152, 240448, -77792, -14586, 765765, // C4[0], coeff of eps^1, polynomial in n of order 6 96, 272, 1088, 10608, -77792, 116688, -51051, 255255, // C4[0], coeff of eps^0, polynomial in n of order 7 588, 952, 1700, 3536, 9724, 58344, -204204, 510510, 765765, // C4[1], coeff of eps^7, polynomial in n of order 0 349, 2297295, // C4[1], coeff of eps^6, polynomial in n of order 1 -1472, 510, 459459, // C4[1], coeff of eps^5, polynomial in n of order 2 -39840, 1904, 255, 2297295, // C4[1], coeff of eps^4, polynomial in n of order 3 52608, 65280, -50048, 7956, 2297295, // C4[1], coeff of eps^3, polynomial in n of order 4 103744, -181968, 98464, 17680, -21879, 2297295, // C4[1], coeff of eps^2, polynomial in n of order 5 -1344, -13056, 101184, -198016, 155584, -43758, 2297295, // C4[1], coeff of eps^1, polynomial in n of order 6 -96, -272, -1088, -10608, 77792, -116688, 51051, 2297295, // C4[2], coeff of eps^7, polynomial in n of order 0 464, 1276275, // C4[2], coeff of eps^6, polynomial in n of order 1 -928, -612, 3828825, // C4[2], coeff of eps^5, polynomial in n of order 2 64256, -28288, 2856, 3828825, // C4[2], coeff of eps^4, polynomial in n of order 3 -126528, 28288, 31552, -15912, 3828825, // C4[2], coeff of eps^3, polynomial in n of order 4 -41472, 115328, -143616, 84864, -19448, 3828825, // C4[2], coeff of eps^2, polynomial in n of order 5 160, 2176, -24480, 70720, -77792, 29172, 3828825, // C4[3], coeff of eps^7, polynomial in n of order 0 -16, 97461, // C4[3], coeff of eps^6, polynomial in n of order 1 -16384, 1088, 5360355, // C4[3], coeff of eps^5, polynomial in n of order 2 -2560, 30464, -11560, 5360355, // C4[3], coeff of eps^4, polynomial in n of order 3 35840, -34816, 17408, -3536, 1786785, // C4[3], coeff of eps^3, polynomial in n of order 4 7168, -30464, 60928, -56576, 19448, 5360355, // C4[4], coeff of eps^7, polynomial in n of order 0 128, 2297295, // C4[4], coeff of eps^6, polynomial in n of order 1 26624, -8704, 6891885, // C4[4], coeff of eps^5, polynomial in n of order 2 -77824, 34816, -6528, 6891885, // C4[4], coeff of eps^4, polynomial in n of order 3 -32256, 52224, -43520, 14144, 6891885, // C4[5], coeff of eps^7, polynomial in n of order 0 -6784, 8423415, // C4[5], coeff of eps^6, polynomial in n of order 1 24576, -4352, 8423415, // C4[5], coeff of eps^5, polynomial in n of order 2 45056, -34816, 10880, 8423415, // C4[6], coeff of eps^7, polynomial in n of order 0 -1024, 3318315, // C4[6], coeff of eps^6, polynomial in n of order 1 -28672, 8704, 9954945, // C4[7], coeff of eps^7, polynomial in n of order 0 1024, 1640925, }; #else #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER" #endif GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == (nC4_ * (nC4_ + 1) * (nC4_ + 5)) / 6, "Coefficient array size mismatch in C4coeff"); int o = 0, k = 0; for (int l = 0; l < nC4_; ++l) { // l is index of C4[l] for (int j = nC4_ - 1; j >= l; --j) { // coeff of eps^j int m = nC4_ - j - 1; // order of polynomial in n _C4x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1]; o += m + 2; } } // Post condition: o == sizeof(coeff) / sizeof(real) && k == nC4x_ } } // namespace GeographicLib