/** * \file Geocentric.cpp * \brief Implementation for GeographicLib::Geocentric class * * Copyright (c) Charles Karney (2008-2017) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #include namespace GeographicLib { using namespace std; Geocentric::Geocentric(real a, real f) : _a(a) , _f(f) , _e2(_f * (2 - _f)) , _e2m(Math::sq(1 - _f)) // 1 - _e2 , _e2a(abs(_e2)) , _e4a(Math::sq(_e2)) , _maxrad(2 * _a / numeric_limits::epsilon()) { if (!(Math::isfinite(_a) && _a > 0)) throw GeographicErr("Equatorial radius is not positive"); if (!(Math::isfinite(_f) && _f < 1)) throw GeographicErr("Polar semi-axis is not positive"); } const Geocentric& Geocentric::WGS84() { static const Geocentric wgs84(Constants::WGS84_a(), Constants::WGS84_f()); return wgs84; } void Geocentric::IntForward(real lat, real lon, real h, real& X, real& Y, real& Z, real M[dim2_]) const { real sphi, cphi, slam, clam; Math::sincosd(Math::LatFix(lat), sphi, cphi); Math::sincosd(lon, slam, clam); real n = _a/sqrt(1 - _e2 * Math::sq(sphi)); Z = (_e2m * n + h) * sphi; X = (n + h) * cphi; Y = X * slam; X *= clam; if (M) Rotation(sphi, cphi, slam, clam, M); } void Geocentric::IntReverse(real X, real Y, real Z, real& lat, real& lon, real& h, real M[dim2_]) const { real R = Math::hypot(X, Y), slam = R != 0 ? Y / R : 0, clam = R != 0 ? X / R : 1; h = Math::hypot(R, Z); // Distance to center of earth real sphi, cphi; if (h > _maxrad) { // We really far away (> 12 million light years); treat the earth as a // point and h, above, is an acceptable approximation to the height. // This avoids overflow, e.g., in the computation of disc below. It's // possible that h has overflowed to inf; but that's OK. // // Treat the case X, Y finite, but R overflows to +inf by scaling by 2. R = Math::hypot(X/2, Y/2); slam = R != 0 ? (Y/2) / R : 0; clam = R != 0 ? (X/2) / R : 1; real H = Math::hypot(Z/2, R); sphi = (Z/2) / H; cphi = R / H; } else if (_e4a == 0) { // Treat the spherical case. Dealing with underflow in the general case // with _e2 = 0 is difficult. Origin maps to N pole same as with // ellipsoid. real H = Math::hypot(h == 0 ? 1 : Z, R); sphi = (h == 0 ? 1 : Z) / H; cphi = R / H; h -= _a; } else { // Treat prolate spheroids by swapping R and Z here and by switching // the arguments to phi = atan2(...) at the end. real p = Math::sq(R / _a), q = _e2m * Math::sq(Z / _a), r = (p + q - _e4a) / 6; if (_f < 0) swap(p, q); if ( !(_e4a * q == 0 && r <= 0) ) { real // Avoid possible division by zero when r = 0 by multiplying // equations for s and t by r^3 and r, resp. S = _e4a * p * q / 4, // S = r^3 * s r2 = Math::sq(r), r3 = r * r2, disc = S * (2 * r3 + S); real u = r; if (disc >= 0) { real T3 = S + r3; // Pick the sign on the sqrt to maximize abs(T3). This minimizes // loss of precision due to cancellation. The result is unchanged // because of the way the T is used in definition of u. T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3 // N.B. cbrt always returns the real root. cbrt(-8) = -2. real T = Math::cbrt(T3); // T = r * t // T can be zero; but then r2 / T -> 0. u += T + (T != 0 ? r2 / T : 0); } else { // T is complex, but the way u is defined the result is real. real ang = atan2(sqrt(-disc), -(S + r3)); // There are three possible cube roots. We choose the root which // avoids cancellation. Note that disc < 0 implies that r < 0. u += 2 * r * cos(ang / 3); } real v = sqrt(Math::sq(u) + _e4a * q), // guaranteed positive // Avoid loss of accuracy when u < 0. Underflow doesn't occur in // e4 * q / (v - u) because u ~ e^4 when q is small and u < 0. uv = u < 0 ? _e4a * q / (v - u) : u + v, // u+v, guaranteed positive // Need to guard against w going negative due to roundoff in uv - q. w = max(real(0), _e2a * (uv - q) / (2 * v)), // Rearrange expression for k to avoid loss of accuracy due to // subtraction. Division by 0 not possible because uv > 0, w >= 0. k = uv / (sqrt(uv + Math::sq(w)) + w), k1 = _f >= 0 ? k : k - _e2, k2 = _f >= 0 ? k + _e2 : k, d = k1 * R / k2, H = Math::hypot(Z/k1, R/k2); sphi = (Z/k1) / H; cphi = (R/k2) / H; h = (1 - _e2m/k1) * Math::hypot(d, Z); } else { // e4 * q == 0 && r <= 0 // This leads to k = 0 (oblate, equatorial plane) and k + e^2 = 0 // (prolate, rotation axis) and the generation of 0/0 in the general // formulas for phi and h. using the general formula and division by 0 // in formula for h. So handle this case by taking the limits: // f > 0: z -> 0, k -> e2 * sqrt(q)/sqrt(e4 - p) // f < 0: R -> 0, k + e2 -> - e2 * sqrt(q)/sqrt(e4 - p) real zz = sqrt((_f >= 0 ? _e4a - p : p) / _e2m), xx = sqrt( _f < 0 ? _e4a - p : p ), H = Math::hypot(zz, xx); sphi = zz / H; cphi = xx / H; if (Z < 0) sphi = -sphi; // for tiny negative Z (not for prolate) h = - _a * (_f >= 0 ? _e2m : 1) * H / _e2a; } } lat = Math::atan2d(sphi, cphi); lon = Math::atan2d(slam, clam); if (M) Rotation(sphi, cphi, slam, clam, M); } void Geocentric::Rotation(real sphi, real cphi, real slam, real clam, real M[dim2_]) { // This rotation matrix is given by the following quaternion operations // qrot(lam, [0,0,1]) * qrot(phi, [0,-1,0]) * [1,1,1,1]/2 // or // qrot(pi/2 + lam, [0,0,1]) * qrot(-pi/2 + phi , [-1,0,0]) // where // qrot(t,v) = [cos(t/2), sin(t/2)*v[1], sin(t/2)*v[2], sin(t/2)*v[3]] // Local X axis (east) in geocentric coords M[0] = -slam; M[3] = clam; M[6] = 0; // Local Y axis (north) in geocentric coords M[1] = -clam * sphi; M[4] = -slam * sphi; M[7] = cphi; // Local Z axis (up) in geocentric coords M[2] = clam * cphi; M[5] = slam * cphi; M[8] = sphi; } } // namespace GeographicLib