/** * \file CircularEngine.cpp * \brief Implementation for GeographicLib::CircularEngine class * * Copyright (c) Charles Karney (2011) and licensed under * the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #include namespace GeographicLib { using namespace std; Math::real CircularEngine::Value(bool gradp, real sl, real cl, real& gradx, real& grady, real& gradz) const { gradp = _gradp && gradp; const vector& root( SphericalEngine::sqrttable() ); // Initialize outer sum real vc = 0, vc2 = 0, vs = 0, vs2 = 0; // v [N + 1], v [N + 2] // vr, vt, vl and similar w variable accumulate the sums for the // derivatives wrt r, theta, and lambda, respectively. real vrc = 0, vrc2 = 0, vrs = 0, vrs2 = 0; // vr[N + 1], vr[N + 2] real vtc = 0, vtc2 = 0, vts = 0, vts2 = 0; // vt[N + 1], vt[N + 2] real vlc = 0, vlc2 = 0, vls = 0, vls2 = 0; // vl[N + 1], vl[N + 2] for (int m = _M; m >= 0; --m) { // m = M .. 0 // Now Sc[m] = wc, Ss[m] = ws // Sc'[m] = wtc, Ss'[m] = wtc if (m) { real v, A, B; // alpha[m], beta[m + 1] switch (_norm) { case FULL: v = root[2] * root[2 * m + 3] / root[m + 1]; A = cl * v * _uq; B = - v * root[2 * m + 5] / (root[8] * root[m + 2]) * _uq2; break; case SCHMIDT: v = root[2] * root[2 * m + 1] / root[m + 1]; A = cl * v * _uq; B = - v * root[2 * m + 3] / (root[8] * root[m + 2]) * _uq2; break; default: A = B = 0; } v = A * vc + B * vc2 + _wc[m] ; vc2 = vc ; vc = v; v = A * vs + B * vs2 + _ws[m] ; vs2 = vs ; vs = v; if (gradp) { v = A * vrc + B * vrc2 + _wrc[m]; vrc2 = vrc; vrc = v; v = A * vrs + B * vrs2 + _wrs[m]; vrs2 = vrs; vrs = v; v = A * vtc + B * vtc2 + _wtc[m]; vtc2 = vtc; vtc = v; v = A * vts + B * vts2 + _wts[m]; vts2 = vts; vts = v; v = A * vlc + B * vlc2 + m*_ws[m]; vlc2 = vlc; vlc = v; v = A * vls + B * vls2 - m*_wc[m]; vls2 = vls; vls = v; } } else { real A, B, qs; switch (_norm) { case FULL: A = root[3] * _uq; // F[1]/(q*cl) or F[1]/(q*sl) B = - root[15]/2 * _uq2; // beta[1]/q break; case SCHMIDT: A = _uq; B = - root[3]/2 * _uq2; break; default: A = B = 0; } qs = _q / SphericalEngine::scale(); vc = qs * (_wc[m] + A * (cl * vc + sl * vs ) + B * vc2); if (gradp) { qs /= _r; // The components of the gradient in circular coordinates are // r: dV/dr // theta: 1/r * dV/dtheta // lambda: 1/(r*u) * dV/dlambda vrc = - qs * (_wrc[m] + A * (cl * vrc + sl * vrs) + B * vrc2); vtc = qs * (_wtc[m] + A * (cl * vtc + sl * vts) + B * vtc2); vlc = qs / _u * ( A * (cl * vlc + sl * vls) + B * vlc2); } } } if (gradp) { // Rotate into cartesian (geocentric) coordinates gradx = cl * (_u * vrc + _t * vtc) - sl * vlc; grady = sl * (_u * vrc + _t * vtc) + cl * vlc; gradz = _t * vrc - _u * vtc ; } return vc; } } // namespace GeographicLib