Jump to * [Introduction](#intro) * [Additional properties](#additional) * [Multiple shortest geodesics](#multiple) * [Background](#background) * [References](#references) ### Introduction Consider a ellipsoid of revolution with equatorial radius *a*, polar semi-axis *b*, and flattening *f* = (*a* − *b*)/*a* . Points on the surface of the ellipsoid are characterized by their latitude φ and longitude λ. (Note that latitude here means the *geographical latitude*, the angle between the normal to the ellipsoid and the equatorial plane). The shortest path between two points on the ellipsoid at (φ1, λ1) and (φ2, λ2) is called the geodesic. Its length is *s*12 and the geodesic from point 1 to point 2 has forward azimuths α1 and α2 at the two end points. In this figure, we have λ12 = λ2 − λ1.
A geodesic can be extended indefinitely by requiring that any sufficiently small segment is a shortest path; geodesics are also the straightest curves on the surface. Traditionally two geodesic problems are considered: * the direct problem — given φ1, λ1, α1, *s*12, determine φ2, λ2, and α2; this is solved by {@link module:GeographicLib/Geodesic.Geodesic#Direct Geodesic.Direct}. * the inverse problem — given φ1, λ1, φ2, λ2, determine *s*12, α1, and α2; this is solved by {@link module:GeographicLib/Geodesic.Geodesic#Inverse Geodesic.Inverse}. ### Additional properties The routines also calculate several other quantities of interest * *S*12 is the area between the geodesic from point 1 to point 2 and the equator; i.e., it is the area, measured counter-clockwise, of the quadrilateral with corners (φ11), (0,λ1), (0,λ2), and (φ22). It is given in meters2. * *m*12, the reduced length of the geodesic is defined such that if the initial azimuth is perturbed by *d*α1 (radians) then the second point is displaced by *m*12 *d*α1 in the direction perpendicular to the geodesic. *m*12 is given in meters. On a curved surface the reduced length obeys a symmetry relation, *m*12 + *m*21 = 0. On a flat surface, we have *m*12 = *s*12. * *M*12 and *M*21 are geodesic scales. If two geodesics are parallel at point 1 and separated by a small distance *dt*, then they are separated by a distance *M*12 *dt* at point 2. *M*21 is defined similarly (with the geodesics being parallel to one another at point 2). *M*12 and *M*21 are dimensionless quantities. On a flat surface, we have *M*12 = *M*21 = 1. * σ12 is the arc length on the auxiliary sphere. This is a construct for converting the problem to one in spherical trigonometry. The spherical arc length from one equator crossing to the next is always 180°. If points 1, 2, and 3 lie on a single geodesic, then the following addition rules hold: * *s*13 = *s*12 + *s*23 * σ13 = σ12 + σ23 * *S*13 = *S*12 + *S*23 * *m*13 = *m*12*M*23 + *m*23*M*21 * *M*13 = *M*12*M*23 − (1 − *M*12*M*21) *m*23/*m*12 * *M*31 = *M*32*M*21 − (1 − *M*23*M*32) *m*12/*m*23 ### Multiple shortest geodesics The shortest distance found by solving the inverse problem is (obviously) uniquely defined. However, in a few special cases there are multiple azimuths which yield the same shortest distance. Here is a catalog of those cases: * φ1 = −φ2 (with neither point at a pole). If α1 = α2, the geodesic is unique. Otherwise there are two geodesics and the second one is obtained by setting [α12] ← [α21], [*M*12,*M*21] ← [*M*21,*M*12], *S*12 ← −*S*12. (This occurs when the longitude difference is near ±180° for oblate ellipsoids.) * λ2 = λ1 ± 180° (with neither point at a pole). If α1 = 0° or ±180°, the geodesic is unique. Otherwise there are two geodesics and the second one is obtained by setting [α12] ← [−α1,−α2], *S*12 ← −*S*12. (This occurs when φ2 is near −φ1 for prolate ellipsoids.) * Points 1 and 2 at opposite poles. There are infinitely many geodesics which can be generated by setting [α12] ← [α12] + [δ,−δ], for arbitrary δ. (For spheres, this prescription applies when points 1 and 2 are antipodal.) * *s*12 = 0 (coincident points). There are infinitely many geodesics which can be generated by setting [α12] ← [α12] + [δ,δ], for arbitrary δ. ### Background The algorithms implemented by this package are given in Karney (2013) and are based on Bessel (1825) and Helmert (1880); the algorithm for areas is based on Danielsen (1989). These improve on the work of Vincenty (1975) in the following respects: * The results are accurate to round-off for terrestrial ellipsoids (the error in the distance is less than 15 nanometers, compared to 0.1 mm for Vincenty). * The solution of the inverse problem is always found. (Vincenty's method fails to converge for nearly antipodal points.) * The routines calculate differential and integral properties of a geodesic. This allows, for example, the area of a geodesic polygon to be computed. ### References * F. W. Bessel, {@link https://arxiv.org/abs/0908.1824 The calculation of longitude and latitude from geodesic measurements (1825)}, Astron. Nachr. **331**(8), 852–861 (2010), translated by C. F. F. Karney and R. E. Deakin. * F. R. Helmert, {@link https://doi.org/10.5281/zenodo.32050 Mathematical and Physical Theories of Higher Geodesy, Vol 1}, (Teubner, Leipzig, 1880), Chaps. 5–7. * T. Vincenty, {@link http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations}, Survey Review **23**(176), 88–93 (1975). * J. Danielsen, {@link https://doi.org/10.1179/003962689791474267 The area under the geodesic}, Survey Review **30**(232), 61–66 (1989). * C. F. F. Karney, {@link https://doi.org/10.1007/s00190-012-0578-z Algorithms for geodesics}, J. Geodesy **87**(1) 43–55 (2013); {@link https://geographiclib.sourceforge.io/geod-addenda.html addenda}. * C. F. F. Karney, {@https://arxiv.org/abs/1102.1215v1 Geodesics on an ellipsoid of revolution}, Feb. 2011; {@link https://geographiclib.sourceforge.io/geod-addenda.html#geod-errata errata}. * {@link https://geographiclib.sourceforge.io/geodesic-papers/biblio.html A geodesic bibliography}. * The wikipedia page, {@link https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid Geodesics on an ellipsoid}.