/** * Implementation of the net.sf.geographiclib.Accumulator class * * Copyright (c) Charles Karney (2013-2019) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ package net.sf.geographiclib; /** * An accumulator for sums. *

* This allow many double precision numbers to be added together with twice the * normal precision. Thus the effective precision of the sum is 106 bits or * about 32 decimal places. *

* The implementation follows J. R. Shewchuk, * Adaptive Precision * Floating-Point Arithmetic and Fast Robust Geometric Predicates, * Discrete & Computational Geometry 18(3) 305–363 (1997). *

* In the documentation of the member functions, sum stands for the * value currently held in the accumulator. ***********************************************************************/ public class Accumulator { // _s + _t accumulators for the sum. private double _s, _t; /** * Construct from a double. *

* @param y set sum = y. **********************************************************************/ public Accumulator(double y) { _s = y; _t = 0; } /** * Construct from another Accumulator. *

* @param a set sum = a. **********************************************************************/ public Accumulator(Accumulator a) { _s = a._s; _t = a._t; } /** * Set the value to a double. *

* @param y set sum = y. **********************************************************************/ public void Set(double y) { _s = y; _t = 0; } /** * Return the value held in the accumulator. *

* @return sum. **********************************************************************/ public double Sum() { return _s; } /** * Return the result of adding a number to sum (but don't change * sum). *

* @param y the number to be added to the sum. * @return sum + y. **********************************************************************/ public double Sum(double y) { Accumulator a = new Accumulator(this); a.Add(y); return a._s; } /** * Add a number to the accumulator. *

* @param y set sum += y. **********************************************************************/ public void Add(double y) { // Here's Shewchuk's solution... double u; // hold exact sum as [s, t, u] // Accumulate starting at least significant end { Pair r = GeoMath.sum(y, _t); y = r.first; u = r.second; } { Pair r = GeoMath.sum(y, _s); _s = r.first; _t = r.second; } // Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u) // exactly with s, t, u non-adjacent and in decreasing order (except for // possible zeros). The following code tries to normalize the result. // Ideally, we want _s = round(s+t+u) and _u = round(s+t+u - _s). The // following does an approximate job (and maintains the decreasing // non-adjacent property). Here are two "failures" using 3-bit floats: // // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3 // // Case 2: _s+_t is not as close to s+t+u as it shold be // [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1) // should be [80, -7] = 73 (exact) // // "Fixing" these problems is probably not worth the expense. The // representation inevitably leads to small errors in the accumulated // values. The additional errors illustrated here amount to 1 ulp of the // less significant word during each addition to the Accumulator and an // additional possible error of 1 ulp in the reported sum. // // Incidentally, the "ideal" representation described above is not // canonical, because _s = round(_s + _t) may not be true. For example, // with 3-bit floats: // // [128, 16] + 1 -> [160, -16] -- 160 = round(145). // But [160, 0] - 16 -> [128, 16] -- 128 = round(144). // if (_s == 0) // This implies t == 0, _s = u; // so result is u else _t += u; // otherwise just accumulate u to t. } /** * Negate an accumulator. *

* Set sum = −sum. **********************************************************************/ public void Negate() { _s = -_s; _t = -_t; } /** * Take the remainder. *

* @param y the modulus *

* Put sum in the rangle [−y, y]. **********************************************************************/ public void Remainder(double y) { _s = GeoMath.remainder(_s, y); Add(0.0); // renormalize } }